Path decompositions for real Levy processes
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 2, page 339-370
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDuquesne, Thomas. "Path decompositions for real Levy processes." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 339-370. <http://eudml.org/doc/77766>.
@article{Duquesne2003,
author = {Duquesne, Thomas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {excursion theory; reversed paths; Williams' decomposition theorems; Bismut's decomposition; reversed excursion},
language = {eng},
number = {2},
pages = {339-370},
publisher = {Elsevier},
title = {Path decompositions for real Levy processes},
url = {http://eudml.org/doc/77766},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Duquesne, Thomas
TI - Path decompositions for real Levy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 339
EP - 370
LA - eng
KW - excursion theory; reversed paths; Williams' decomposition theorems; Bismut's decomposition; reversed excursion
UR - http://eudml.org/doc/77766
ER -
References
top- [1] J. Bertoin, Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son minimum, Ann. Inst. H. Poincaré.27 (4) (1991) 537-547. Zbl0758.60073MR1141246
- [2] J. Bertoin, An extension of Pitman's theorem for spectrally negative Lévy processes, Ann. Probab.20 (1992) 1464-1483. Zbl0760.60068MR1175272
- [3] J. Bertoin, Splitting at the infimum and excursions in half-lines for random walks and Lévy processes, Stoch. Process. Appl.47 (1993) 17-45. Zbl0786.60101MR1232850
- [4] J. Bertoin, Lévy Processes, Cambridge Univ. Press, 1996. Zbl0861.60003MR1406564
- [5] N.H. Bingham, Fluctuation theory in continuous time, Adv. Appl. Probab.7 (1975) 705-766. Zbl0322.60068MR386027
- [6] J.M. Bismut, Last exit decomposition and regularity at the boundary of transition probabilities, Zeitschrift Wahr.69 (1985) 65-98. Zbl0551.60077MR775853
- [7] L. Chaumont, Processus de Lévy et conditionnement, Thèse de doctorat, Laboratoire de Probabilités de Paris 6, 1994.
- [8] L. Chaumont, Sur certains processus de Lévy conditionnés à rester positifs, Stochastics and Stochastics Reports47 (1994) 1-20. Zbl0827.60064MR1787140
- [9] L. Chaumont, Conditionings and paths decompositions for Lévy processes, Stochastic Process. Appl.64-1 (1996) 39-54. Zbl0879.60072MR1419491
- [10] L. Chaumont, Excursion normalisée, méandre et pont pour les processus de Lévy stables, Bull. Sci. Math.121-5 (1997) 377-403. Zbl0882.60074MR1465814
- [11] H. Kesten, Hitting probabilities of a single point for processes with stationary independent increments, Mem. Amer. Math. Soc.93 (1969). Zbl0186.50202MR272059
- [12] J.-F. Le Gall, Y. Le Jan, Branching processes in Lévy processes: the exploration process, Ann. Probab.26-1 (1998) 213-252. Zbl0948.60071MR1617047
- [13] Y. Le Jan, Dual Markovian Semigroups and Processes, in: Functional Analysis in Markov Processes, Lect. Notes Math., 923, Springer-Verlag, 1981. Zbl0484.60060MR661618
- [14] P.W. Millar, Exit properties of stochastic processes with independent increments, Trans. Amer. Math. Soc.178 (1973) 459-479. Zbl0268.60065MR321198
- [15] P.W. Millar, Exit zero-one laws and the minimum of a Markov process, Trans. Amer. Math. Soc.226 (1977) 365-391. Zbl0381.60062MR433606
- [16] J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Adv. Appl. Probab.7 (1975) 511-526. Zbl0332.60055MR375485
- [17] L.C.G. Rogers, A new identity for real Lévy processes, Ann. Inst. H. Poincaré20 (1984) 21-34. MR740248
- [18] M.L. Silverstein, Classification of coharmonic and coinvariant functions for a Lévy process, Ann. Probab.8 (1980) 539-575. Zbl0459.60063MR573292
- [19] D. Williams, Path decomposition and continuity of local time for one-dimensional diffusion, Proc. London Math. Soc.28 (1974) 738-768. Zbl0326.60093MR350881
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.