Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum

Jean Bertoin

Annales de l'I.H.P. Probabilités et statistiques (1991)

  • Volume: 27, Issue: 4, page 537-547
  • ISSN: 0246-0203

How to cite

top

Bertoin, Jean. "Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum." Annales de l'I.H.P. Probabilités et statistiques 27.4 (1991): 537-547. <http://eudml.org/doc/77416>.

@article{Bertoin1991,
author = {Bertoin, Jean},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {path decomposition; spectrally positive Lévy process; cumulant function; inverse Pitman's theorem},
language = {fre},
number = {4},
pages = {537-547},
publisher = {Gauthier-Villars},
title = {Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum},
url = {http://eudml.org/doc/77416},
volume = {27},
year = {1991},
}

TY - JOUR
AU - Bertoin, Jean
TI - Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1991
PB - Gauthier-Villars
VL - 27
IS - 4
SP - 537
EP - 547
LA - fre
KW - path decomposition; spectrally positive Lévy process; cumulant function; inverse Pitman's theorem
UR - http://eudml.org/doc/77416
ER -

References

top
  1. [1] J. Bertoin, An Extension of Pitman's Theorem for Spectrally Positive Lévy Processes, Ann. Prob. (à paraître). Zbl0760.60068
  2. [2] N.H. Bingham, Fluctuation Theory in Continuous Time, Adv. Appl. Prob., vol. 7, 1975, p. 705-766. Zbl0322.60068MR386027
  3. [3] R.A. Doney, Hitting Probabilities for Spectrally Positive Lévy Processes, J. London Math. Soc. (à paraître). Zbl0699.60061
  4. [4] P. Greenwood et J. Pitman, Fluctuation Identities for Lévy Processes and Splitting at the Maximum, Adv. Appl. Prob., vol. 12, 1980, p. 893-902. Zbl0443.60037MR588409
  5. [5] Y. Le Jan, Dual Markovian Semigroups and Processes, in M. FUKUSHIMA éd., Functional Analysis in Markov Processes; Proceeding, Kataka and Kyoto, 1981; Lect. Notes Math., n° 923, Springer Verlag, 1981, p. 47-75. Zbl0484.60060MR661618
  6. [6] P.W. Millar, Zero-One Laws and the Minimum of a Markov Process, Trans. Am. Math. Soc., vol. 226, 1977, p. 365-391. Zbl0381.60062MR433606
  7. [7] J.W. Pitman, One-Dimensional Brownian Motion and the Three-Dimensional Bessel Process, Adv. Appl. Prob., vol. 7, 1975, p. 511-526. Zbl0332.60055MR375485
  8. [8] L.C.G. Rogers, A New Identity for Real Lévy Processes, Ann. Inst. Henri Poincaré, vol. 20, n° 1, 1984, p. 21-34. MR740248
  9. [9] L.C.G. Rogers et J. Pitman, Markov Functions, Ann. Prob., vol. 9, 1981, p. 573- 581. Zbl0466.60070MR624684
  10. [10] D. Williams, Path Decomposition and Continuity of Local Time for One-Dimensional Diffusions, Proc. London Math. Soc., vol. 28, 1974, p. 738-768. Zbl0326.60093MR350881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.