Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder

Pietro Caputo; Dmitry Ioffe

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 3, page 505-525
  • ISSN: 0246-0203

How to cite


Caputo, Pietro, and Ioffe, Dmitry. "Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 505-525. <>.

author = {Caputo, Pietro, Ioffe, Dmitry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {effective diffusion coefficient; bond disorder; corrector field},
language = {eng},
number = {3},
pages = {505-525},
publisher = {Elsevier},
title = {Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder},
url = {},
volume = {39},
year = {2003},

AU - Caputo, Pietro
AU - Ioffe, Dmitry
TI - Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 505
EP - 525
LA - eng
KW - effective diffusion coefficient; bond disorder; corrector field
UR -
ER -


  1. [1] D Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab.21 (1993) 1427-1440. Zbl0783.60067MR1235423
  2. [2] D Bovin, Y Derriennic, The ergodic theorem for additive cocycles of Zd or Rd, Ergodic Theory Dynam. Systems11 (1991) 19-39. Zbl0723.60008MR1101082
  3. [3] A De Masi, P Ferrari, S Goldstein, W.D Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys.55 (1989) 787-855. Zbl0713.60041MR1003538
  4. [4] J.-D Deuschel, G Giacomin, D Ioffe, Large deviations and concentration properties for ∇φ interface models, Probab. Theory Related Fields117 (2000) 49-111. Zbl0988.82018
  5. [5] T Funaki, H Spohn, Motion by mean curvature from the Ginzburg–Landau ∇φ interface model, Comm. Math. Phys.185 (1997) 1-36. Zbl0884.58098
  6. [6] H.O Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Math., 9, 1988. Zbl0657.60122MR956646
  7. [7] G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuation for a Ginzburg–Landau interface model, Ann. Probab., to appear. Zbl1017.60100
  8. [8] D Gilbarg, N.S Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. Zbl0562.35001MR737190
  9. [9] V.V Jikov, S.M Kozlov, O.A Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994. Zbl0838.35001MR1329546
  10. [10] C Kipnis, S.R.S Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys.104 (1986) 1-19. Zbl0588.60058MR834478
  11. [11] S.M Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys40 (2) (1985) 73-145. Zbl0615.60063MR786087
  12. [12] C. Landim, S. Olla, S.R.S. Varadhan, Finite-dimensional approximation of the self-diffusion coefficient for the exclusion process, Ann. Probab., to appear. Zbl1018.60097MR1905849
  13. [13] G.F Lawler, Intersection of Random Walks, Probability and its Applications, Birkhäuser Boston, 1991. Zbl0925.60078MR1117680
  14. [14] R Künnemann, The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities, Comm. Math. Phys.90 (1983) 27-68. Zbl0523.60097MR714611
  15. [15] N.C Meyers, An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa17 (1963) 189-206. Zbl0127.31904MR159110
  16. [16] S Olla, Lectures on Homogenization of Diffusion Processes in Random Fields, Ecole Polytechnique, 1994. 
  17. [17] H. Owhadi, Approximation of the effective conductivity of ergodic media by periodization, Preprint, 2002. Zbl1040.60025MR1961343
  18. [18] G Papanicolaou, S.R.S Varadhan, Diffusions with random coefficients, in: Statistics and Probability: Essays in Honor of C.R. Rao, North-Holland, Amsterdam, 1982, pp. 547-552. Zbl0486.60076MR659505
  19. [19] M Talagrand, A new look at independence, Ann. Probab.24 (1996) 1-34. Zbl0858.60019MR1387624

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.