Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 3, page 505-525
- ISSN: 0246-0203
Access Full Article
topHow to cite
topCaputo, Pietro, and Ioffe, Dmitry. "Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 505-525. <http://eudml.org/doc/77771>.
@article{Caputo2003,
author = {Caputo, Pietro, Ioffe, Dmitry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {effective diffusion coefficient; bond disorder; corrector field},
language = {eng},
number = {3},
pages = {505-525},
publisher = {Elsevier},
title = {Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder},
url = {http://eudml.org/doc/77771},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Caputo, Pietro
AU - Ioffe, Dmitry
TI - Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 505
EP - 525
LA - eng
KW - effective diffusion coefficient; bond disorder; corrector field
UR - http://eudml.org/doc/77771
ER -
References
top- [1] D Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab.21 (1993) 1427-1440. Zbl0783.60067MR1235423
- [2] D Bovin, Y Derriennic, The ergodic theorem for additive cocycles of Zd or Rd, Ergodic Theory Dynam. Systems11 (1991) 19-39. Zbl0723.60008MR1101082
- [3] A De Masi, P Ferrari, S Goldstein, W.D Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys.55 (1989) 787-855. Zbl0713.60041MR1003538
- [4] J.-D Deuschel, G Giacomin, D Ioffe, Large deviations and concentration properties for ∇φ interface models, Probab. Theory Related Fields117 (2000) 49-111. Zbl0988.82018
- [5] T Funaki, H Spohn, Motion by mean curvature from the Ginzburg–Landau ∇φ interface model, Comm. Math. Phys.185 (1997) 1-36. Zbl0884.58098
- [6] H.O Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Math., 9, 1988. Zbl0657.60122MR956646
- [7] G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuation for a Ginzburg–Landau interface model, Ann. Probab., to appear. Zbl1017.60100
- [8] D Gilbarg, N.S Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. Zbl0562.35001MR737190
- [9] V.V Jikov, S.M Kozlov, O.A Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994. Zbl0838.35001MR1329546
- [10] C Kipnis, S.R.S Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys.104 (1986) 1-19. Zbl0588.60058MR834478
- [11] S.M Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys40 (2) (1985) 73-145. Zbl0615.60063MR786087
- [12] C. Landim, S. Olla, S.R.S. Varadhan, Finite-dimensional approximation of the self-diffusion coefficient for the exclusion process, Ann. Probab., to appear. Zbl1018.60097MR1905849
- [13] G.F Lawler, Intersection of Random Walks, Probability and its Applications, Birkhäuser Boston, 1991. Zbl0925.60078MR1117680
- [14] R Künnemann, The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities, Comm. Math. Phys.90 (1983) 27-68. Zbl0523.60097MR714611
- [15] N.C Meyers, An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa17 (1963) 189-206. Zbl0127.31904MR159110
- [16] S Olla, Lectures on Homogenization of Diffusion Processes in Random Fields, Ecole Polytechnique, 1994.
- [17] H. Owhadi, Approximation of the effective conductivity of ergodic media by periodization, Preprint, 2002. Zbl1040.60025MR1961343
- [18] G Papanicolaou, S.R.S Varadhan, Diffusions with random coefficients, in: Statistics and Probability: Essays in Honor of C.R. Rao, North-Holland, Amsterdam, 1982, pp. 547-552. Zbl0486.60076MR659505
- [19] M Talagrand, A new look at independence, Ann. Probab.24 (1996) 1-34. Zbl0858.60019MR1387624
Citations in EuDML Documents
top- Antoine Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations
- Jean-Christophe Mourrat, Variance decay for functionals of the environment viewed by the particle
- Daniel Boivin, Tail estimates for homogenization theorems in random media
- Antoine Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.