Limit theorems for subcritical branching processes in random environment

Jochen Geiger; Götz Kersting; Vladimir A. Vatutin

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 4, page 593-620
  • ISSN: 0246-0203

How to cite

top

Geiger, Jochen, Kersting, Götz, and Vatutin, Vladimir A.. "Limit theorems for subcritical branching processes in random environment." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 593-620. <http://eudml.org/doc/77774>.

@article{Geiger2003,
author = {Geiger, Jochen, Kersting, Götz, Vatutin, Vladimir A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Branching process; random environment; conditioned random walk; limit theorems},
language = {eng},
number = {4},
pages = {593-620},
publisher = {Elsevier},
title = {Limit theorems for subcritical branching processes in random environment},
url = {http://eudml.org/doc/77774},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Geiger, Jochen
AU - Kersting, Götz
AU - Vatutin, Vladimir A.
TI - Limit theorems for subcritical branching processes in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 593
EP - 620
LA - eng
KW - Branching process; random environment; conditioned random walk; limit theorems
UR - http://eudml.org/doc/77774
ER -

References

top
  1. [1] V.I. Afanasyev, Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., Moscow, MSU, 1980. 
  2. [2] V.I. Afanasyev, Limit theorems for a moderately subcritical branching process in a random environment, Discrete Math. Appl.8 (1998) 35-52. Zbl0977.60080MR1669043
  3. [3] A. Agresti, Bounds on the extinction time distribution of a branching process, Adv. Appl. Probab.6 (1974) 322-335. Zbl0293.60077MR423562
  4. [4] K.B. Athreya, S. Karlin, On branching processes with random environments: I, II, Ann. Math. Stat.42 (1971) 1499-1520, 1843–1858. Zbl0228.60032
  5. [5] K.B. Athreya, P. Ney, Branching Processes, Springer, New York, 1972. Zbl0259.60002MR373040
  6. [6] J. Bertoin, R.A. Doney, On conditioning a random walk to stay positive, Ann. Probab.22 (1994) 2152-2167. Zbl0834.60079MR1331218
  7. [7] F.M. Dekking, On the survival probability of a branching process in a finite state i.i.d. environment, Stochastic Processes Appl.27 (1988) 151-157. Zbl0634.60072MR934535
  8. [8] R.A. Doney, On the asymptotic behaviour of first passage times for transient random walk, Probab. Theory Related Fields81 (1989) 239-246. Zbl0643.60053MR982656
  9. [9] J.S. D'Souza, B.M. Hambly, On the survival probability of a branching process in a random environment, Adv. Appl. Probab.29 (1997) 38-55. Zbl0880.60086MR1432930
  10. [10] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971. Zbl0138.10207MR270403
  11. [11] K. Fleischmann, V.A. Vatutin, Reduced subcritical Galton–Watson processes in a random environment, Adv. Appl. Probab.31 (1999) 88-111. Zbl0938.60090
  12. [12] J. Geiger, Elementary new proofs of classical limit theorems for Galton–Watson processes, J. Appl. Probab.36 (1999) 301-309. Zbl0942.60071
  13. [13] J. Geiger, G. Kersting, The survival probability of a critical branching process in random environment, Teor. Verojatnost. i Primenen.45 (2000) 607-615. Zbl0994.60095MR1967796
  14. [14] Y. Guivarc'h, Q. Liu, Propriétés asymptotiques des processus de branchement en environnement aléatoire, C. R. Acad. Sci. Paris Sér. I Math.332 (4) (2001) 339-344. Zbl0988.60080MR1821473
  15. [15] K. Hirano, Determination of the limiting coefficient for exponential functionals of random walks with positive drift, J. Math. Sci. Univ. Tokyo5 (1998) 299-332. Zbl0913.60053MR1633937
  16. [16] O. Kallenberg, Foundations of Modern Probability, Springer, New York, 1997. Zbl0892.60001MR1464694
  17. [17] M.V. Kozlov, On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment, Theory Probab. Appl.21 (1976) 791-804. Zbl0384.60058MR428492
  18. [18] Q. Liu, On the survival probability of a branching process in a random environment, Ann. Inst. H. Poincaré Probab. Statist.32 (1996) 1-10. Zbl0840.60078MR1373725
  19. [19] W.L. Smith, W.E. Wilkinson, On branching processes in random environments, Ann. Math. Stat.40 (1969) 814-827. Zbl0184.21103MR246380
  20. [20] N. Veraverbeke, J.L. Teugels, The exponential rate of convergence of the distribution of the maximum of a random walk. Part II, J. Appl. Probab.13 (1976) 733-740. Zbl0353.60072MR440705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.