Limit theorems for subcritical branching processes in random environment
Jochen Geiger; Götz Kersting; Vladimir A. Vatutin
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 4, page 593-620
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGeiger, Jochen, Kersting, Götz, and Vatutin, Vladimir A.. "Limit theorems for subcritical branching processes in random environment." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 593-620. <http://eudml.org/doc/77774>.
@article{Geiger2003,
author = {Geiger, Jochen, Kersting, Götz, Vatutin, Vladimir A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Branching process; random environment; conditioned random walk; limit theorems},
language = {eng},
number = {4},
pages = {593-620},
publisher = {Elsevier},
title = {Limit theorems for subcritical branching processes in random environment},
url = {http://eudml.org/doc/77774},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Geiger, Jochen
AU - Kersting, Götz
AU - Vatutin, Vladimir A.
TI - Limit theorems for subcritical branching processes in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 593
EP - 620
LA - eng
KW - Branching process; random environment; conditioned random walk; limit theorems
UR - http://eudml.org/doc/77774
ER -
References
top- [1] V.I. Afanasyev, Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., Moscow, MSU, 1980.
- [2] V.I. Afanasyev, Limit theorems for a moderately subcritical branching process in a random environment, Discrete Math. Appl.8 (1998) 35-52. Zbl0977.60080MR1669043
- [3] A. Agresti, Bounds on the extinction time distribution of a branching process, Adv. Appl. Probab.6 (1974) 322-335. Zbl0293.60077MR423562
- [4] K.B. Athreya, S. Karlin, On branching processes with random environments: I, II, Ann. Math. Stat.42 (1971) 1499-1520, 1843–1858. Zbl0228.60032
- [5] K.B. Athreya, P. Ney, Branching Processes, Springer, New York, 1972. Zbl0259.60002MR373040
- [6] J. Bertoin, R.A. Doney, On conditioning a random walk to stay positive, Ann. Probab.22 (1994) 2152-2167. Zbl0834.60079MR1331218
- [7] F.M. Dekking, On the survival probability of a branching process in a finite state i.i.d. environment, Stochastic Processes Appl.27 (1988) 151-157. Zbl0634.60072MR934535
- [8] R.A. Doney, On the asymptotic behaviour of first passage times for transient random walk, Probab. Theory Related Fields81 (1989) 239-246. Zbl0643.60053MR982656
- [9] J.S. D'Souza, B.M. Hambly, On the survival probability of a branching process in a random environment, Adv. Appl. Probab.29 (1997) 38-55. Zbl0880.60086MR1432930
- [10] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971. Zbl0138.10207MR270403
- [11] K. Fleischmann, V.A. Vatutin, Reduced subcritical Galton–Watson processes in a random environment, Adv. Appl. Probab.31 (1999) 88-111. Zbl0938.60090
- [12] J. Geiger, Elementary new proofs of classical limit theorems for Galton–Watson processes, J. Appl. Probab.36 (1999) 301-309. Zbl0942.60071
- [13] J. Geiger, G. Kersting, The survival probability of a critical branching process in random environment, Teor. Verojatnost. i Primenen.45 (2000) 607-615. Zbl0994.60095MR1967796
- [14] Y. Guivarc'h, Q. Liu, Propriétés asymptotiques des processus de branchement en environnement aléatoire, C. R. Acad. Sci. Paris Sér. I Math.332 (4) (2001) 339-344. Zbl0988.60080MR1821473
- [15] K. Hirano, Determination of the limiting coefficient for exponential functionals of random walks with positive drift, J. Math. Sci. Univ. Tokyo5 (1998) 299-332. Zbl0913.60053MR1633937
- [16] O. Kallenberg, Foundations of Modern Probability, Springer, New York, 1997. Zbl0892.60001MR1464694
- [17] M.V. Kozlov, On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment, Theory Probab. Appl.21 (1976) 791-804. Zbl0384.60058MR428492
- [18] Q. Liu, On the survival probability of a branching process in a random environment, Ann. Inst. H. Poincaré Probab. Statist.32 (1996) 1-10. Zbl0840.60078MR1373725
- [19] W.L. Smith, W.E. Wilkinson, On branching processes in random environments, Ann. Math. Stat.40 (1969) 814-827. Zbl0184.21103MR246380
- [20] N. Veraverbeke, J.L. Teugels, The exponential rate of convergence of the distribution of the maximum of a random walk. Part II, J. Appl. Probab.13 (1976) 733-740. Zbl0353.60072MR440705
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.