Conditional limit theorems for intermediately subcritical branching processes in random environment
V. I. Afanasyev; Ch. Böinghoff; G. Kersting; V. A. Vatutin
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 602-627
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAfanasyev, V. I., et al. "Conditional limit theorems for intermediately subcritical branching processes in random environment." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 602-627. <http://eudml.org/doc/272094>.
@article{Afanasyev2014,
abstract = {For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of ‘bottleneck’ behavior appears under the annealed approach only in the intermediately subcritical case.},
author = {Afanasyev, V. I., Böinghoff, Ch., Kersting, G., Vatutin, V. A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching process; random environment; random walk; change of measure; survival probability; functional limit theorem; tree},
language = {eng},
number = {2},
pages = {602-627},
publisher = {Gauthier-Villars},
title = {Conditional limit theorems for intermediately subcritical branching processes in random environment},
url = {http://eudml.org/doc/272094},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Afanasyev, V. I.
AU - Böinghoff, Ch.
AU - Kersting, G.
AU - Vatutin, V. A.
TI - Conditional limit theorems for intermediately subcritical branching processes in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 602
EP - 627
AB - For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of ‘bottleneck’ behavior appears under the annealed approach only in the intermediately subcritical case.
LA - eng
KW - branching process; random environment; random walk; change of measure; survival probability; functional limit theorem; tree
UR - http://eudml.org/doc/272094
ER -
References
top- [1] V. I. Afanasyev. Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., MSU, Moscow, 1980.
- [2] V. I. Afanasyev. Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment. Discrete Math. Appl.11 (2001) 105–131. Zbl1045.60087MR1846044
- [3] V. I. Afanasyev, Ch. Böinghoff, G. Kersting and V. A. Vatutin. Limit theorems for weakly subcritical branching processes in random environment. J. Theoret. Probab.25 (2012) 703–732. Zbl1262.60083MR2956209
- [4] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin. Criticality for branching processes in random environment. Ann. Probab.33 (2005) 645–673. Zbl1075.60107MR2123206
- [5] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process. Appl.115 (2005) 1658–1676. Zbl1080.60079MR2165338
- [6] A. Agresti. On the extinction times of varying and random environment branching processes. J. Appl. Probab.12 (1975) 39–46. Zbl0306.60052MR365733
- [7] K. B. Athreya and S. Karlin. On branching processes with random environments: I, II. Ann. Math. Stat. 42 (1971) 1499–1520, 1843–1858. Zbl0228.60033
- [8] V. Bansaye and Ch. Böinghoff. Upper large deviations for branching processes in random environment with heavy tails. Electron. J. Probab.16 (2011) 1900–1933. Zbl1245.60081MR2851050
- [9] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
- [10] J. Bertoin and R. A. Doney. On conditioning a random walk to stay non-negative. Ann. Probab.22 (1994) 2152–2167. Zbl0834.60079MR1331218
- [11] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1987. Zbl0667.26003MR898871
- [12] M. Birkner, J. Geiger and G. Kersting. Branching processes in random environment – A view on critical and subcritical cases. In Proceedings of the DFG-Schwerpunktprogramm Interacting Stochastic Systems of High Complexity 269–291. Springer, Berlin, 2005. Zbl1084.60062MR2118578
- [13] Ch. Böinghoff and G. Kersting. Upper large deviations of branching processes in a random environment – Offspring distributions with geometrically bounded tails. Stochastic Process. Appl.120 (2010) 2064–2077. Zbl1198.60045MR2673988
- [14] Ch. Böinghoff and G. Kersting. Simulations and a conditional limit theorem for intermediately subcritcal branching processes in random environment. Preprint, 2012. Available at arXiv:1209.1274. Zbl1288.60107
- [15] F. Caravenna and L. Chaumont. Invariance principles for random walks conditioned to stay positive. Ann. Inst. Henri Poincaré Probab. Stat.44 (2008) 170–190. Zbl1175.60029MR2451576
- [16] L. Chaumont. Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math.121 (1997) 377–403. Zbl0882.60074MR1465814
- [17] B. Chauvin, A. Rouault and A. Wakolbinger. Growing conditioned trees. Stochastic Process. Appl.39 (1991) 117–130. Zbl0747.60077MR1135089
- [18] F. M. Dekking. On the survival probability of a branching process in a finite state i.i.d. environment. Stochastic Process. Appl.27 (1988) 151–157. Zbl0634.60072MR934535
- [19] R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. verw. Gebiete 70 (1985) 351–360. Zbl0573.60063MR803677
- [20] J. Geiger. Elementary new proofs of classical limit theorems for Galton–Watson processes. J. Appl. Probab.36 (1999) 301–309. Zbl0942.60071MR1724856
- [21] J. Geiger, G. Kersting and V. A. Vatutin. Limit theorems for subcritical branching processes in random environment. Ann. Inst. Henri Poincaré Probab. Stat.39 (2003) 593–620. Zbl1038.60083MR1983172
- [22] Y. Guivarc’h and Q. Liu. Propriétés asymptotiques des processus de branchement en environnement aléatoire. C. R. Math. Acad. Sci. Paris Sér. I332 (2001) 339–344. Zbl0988.60080
- [23] O. Kallenberg. Stability of critical cluster fields. Math. Nachr.77 (1977) 7–43. Zbl0361.60058MR443078
- [24] M. V. Kozlov. On large deviations of branching processes in a random environment: Geometric distribution of descendants. Discrete Math. Appl.16 (2006) 155–174. Zbl1126.60089MR2283329
- [25] M. V. Kozlov. On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny. Theory Probab. Appl.54 (2010) 424–446. Zbl1213.60162MR2766343
- [26] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab.23 (1995) 1125–1138. Zbl0840.60077MR1349164
- [27] J. Neveu. Erasing a branching tree. Adv. Appl. Probab.18 (1986) 101–108. Zbl0613.60078MR868511
- [28] W. L. Smith and W. E. Wilkinson. On branching processes in random environments. Ann. Math. Stat.40 (1969) 814–827. Zbl0184.21103MR246380
- [29] H. Tanaka. Time reversal of random walks in one dimension. Tokyo J. Math.12 (1989) 159–174. Zbl0692.60052MR1001739
- [30] V. A. Vatutin. A limit theorem for an intermediate subcritical branching process in a random environment. Theory Probab. Appl.48 (2004) 481–492. Zbl1068.60096MR2141345
- [31] V. A. Vatutin and E. E. Dyakonova. Galton–Watson branching processes in random environment. I: Limit theorems. Theory Probab. Appl. 48 (2004) 314–336. Zbl1079.60080MR2015453
- [32] V. A. Vatutin and E. E. Dyakonova. Galton–Watson branching processes in random environment. II: Finite-dimensional distributions. Theory Probab. Appl. 49 (2005) 275–308. Zbl1091.60037MR2144298
- [33] V. A. Vatutin and E. E. Dyakonova. Branching processes in random environment and the bottlenecks in the evolution of populations. Theory Probab. Appl.51 (2007) 189–210. Zbl1114.60085MR2324164
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.