On ballistic diffusions in random environment

Lian Shen

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 5, page 839-876
  • ISSN: 0246-0203

How to cite

top

Shen, Lian. "On ballistic diffusions in random environment." Annales de l'I.H.P. Probabilités et statistiques 39.5 (2003): 839-876. <http://eudml.org/doc/77783>.

@article{Shen2003,
author = {Shen, Lian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {diffusions in random environment; strong law of large numbers; regeneration times},
language = {eng},
number = {5},
pages = {839-876},
publisher = {Elsevier},
title = {On ballistic diffusions in random environment},
url = {http://eudml.org/doc/77783},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Shen, Lian
TI - On ballistic diffusions in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 5
SP - 839
EP - 876
LA - eng
KW - diffusions in random environment; strong law of large numbers; regeneration times
UR - http://eudml.org/doc/77783
ER -

References

top
  1. [1] R.J. Adler, The Geometry of Random Fields, Wiley, New York, 1981. Zbl0478.60059MR611857
  2. [2] R. Bass, Diffusions and Elliptic Operators, Springer-Verlag, Berlin, 1998. Zbl0914.60009MR1483890
  3. [3] E. Bolthausen, A.-S. Sznitman, Ten Lectures on Random Media, DMV-Lectures, 32, Birkhäuser, Basel, 2002. Zbl1075.60128MR1890289
  4. [4] F. Comets, O. Zeitouni, A law of large numbers for random walks in random mixing environments, preprint. Zbl1078.60089MR2039946
  5. [5] A. De Masi, P.A. Ferrari, S. Goldstein, W.D. Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys.55 (1989) 787-855. Zbl0713.60041MR1003538
  6. [6] R. Durrett, Stochastic Calculus, CRC Press, Boca Raton, 1996. Zbl0856.60002MR1398879
  7. [7] S.N. Ethier, T.G. Kurtz, Markov Processes, Wiley, New York, 1986. Zbl0592.60049MR838085
  8. [8] A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Academic Press, San Diego, 1975. Zbl0323.60056MR494490
  9. [9] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, 1980. Zbl0422.31007MR569058
  10. [10] M. Fukushima, D. Stroock, Reversibility of solutions to martingale problems, in: Probability, Statistical Mechanics, and Number Theory, Adv. Math. Suppl. Stud., 9, Academic Press, San Diego, 1986, pp. 107-123. Zbl0613.60066MR875449
  11. [11] A.M. Il'in, A.S. Kalashnikov, O.A. Oleinik, Linear equations of the second order of parabolic type, Russian Math. Surveys17 (1) (1962) 1-143. 
  12. [12] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Zbl0838.35001MR1329546
  13. [13] C. Kipnis, S.R.S. Varadhan, A central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys.104 (1986) 1-19. Zbl0588.60058MR834478
  14. [14] T. Komorowski, G. Krupa, On the existence of invariant measure for Lagrangian velocity in compressible environments, J. Statist. Phys.106 (3–4) (2002) 635-651. Zbl0996.60065
  15. [15] T. Komorowski, S. Olla, On homogenization of time-dependent random flows, Probab. Theory Related Fields121 (1) (2001) 98-116. Zbl0996.60040MR1857110
  16. [16] S.M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys40 (1985) 73-145. Zbl0615.60063MR786087
  17. [17] C. Landim, S. Olla, H.T. Yau, Convection-diffusion equation with space–time ergodic random flow, Probab. Theory Related Fields112 (1998) 203-220. Zbl0914.60070
  18. [18] J.L. Lebowitz, H. Rost, The Einstein relation for the displacement of a test particle in a random environment, Stochastic Process. Appl.54 (1994) 183-196. Zbl0812.60096MR1307334
  19. [19] S.A. Molchanov, Lectures on random media, in: Lecture Notes in Math., Vol. 1581, Springer, Berlin, 1994, pp. 242-411. Zbl0814.60093MR1307415
  20. [20] K. Oelschläger, Homogenization of a diffusion process in a divergence-free random fields, Ann. Probab.16 (3) (1988) 1084-1126. Zbl0653.60047MR942757
  21. [21] S. Olla, Homogenization of diffusion processes in random fields, École Doctorale, École Polytechnique, Palaiseau, 1994. 
  22. [22] H. Osada, Homogenization of diffusion processes with random stationary coefficients, in: Lecture Notes in Math., Vol. 1021, Springer, Berlin, 1983, pp. 507-517. Zbl0535.60071MR736016
  23. [23] G. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in: Fritz J., Szasz D. (Eds.), Random Fields, Janyos Bolyai Ser., North-Holland, 1981. Zbl0499.60059MR712714
  24. [24] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, Academic Press, San Diego, 1980. Zbl0242.46001MR751959
  25. [25] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999. Zbl0731.60002MR1725357
  26. [26] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
  27. [27] L. Shen, Asymptotic properties of certain anisotropic walks in random media, Ann. Appl. Probab.12 (2) (2002) 477-510. Zbl1016.60092MR1910636
  28. [28] D. Stroock, Probability Theory, An Analytic View, Cambridge University Press, 1993. Zbl0925.60004MR1267569
  29. [29] D. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, in: Lecture Notes in Math., Vol. 1321, Springer-Verlag, Berlin, 1988, pp. 316-347. Zbl0651.47031MR960535
  30. [30] K.T. Sturm, Analysis on local Dirichlet Spaces – II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math.32 (1995) 275-312. Zbl0854.35015
  31. [31] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer-Verlag, Berlin, 1998. Zbl0973.60003MR1717054
  32. [32] A.-S. Sznitman, Slowdown estimates and central limit theorem for random walks in random environment, J. European Math. Soc.2 (2000) 93-143. Zbl0976.60097MR1763302
  33. [33] A.-S. Sznitman, On a class of transient random walks in random environment, Ann. Probab.29 (2) (2001) 723-764. Zbl1017.60106MR1849176
  34. [34] A.-S. Sznitman, An effective criterion for ballistic behavior of random walks in random environment, Probab. Theory Related Fields122 (4) (2002) 509-544. Zbl0995.60097MR1902189
  35. [35] A.-S. Sznitman, M.P.W. Zerner, A law of large numbers for random walks in random environment, Ann. Probab.27 (4) (1999) 1851-1869. Zbl0965.60100MR1742891
  36. [36] O. Zeitouni, Lecture notes on random walks in random environment, St. Flour lecture notes, http://www.ee.technion.ac.il/~zeitouni/ps/notes1.ps. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.