Diffusion semigroups corresponding to uniformly elliptic divergence form operators
Séminaire de probabilités de Strasbourg (1988)
- Volume: 22, page 316-347
Access Full Article
topHow to cite
topStroock, Daniel W.. "Diffusion semigroups corresponding to uniformly elliptic divergence form operators." Séminaire de probabilités de Strasbourg 22 (1988): 316-347. <http://eudml.org/doc/113641>.
@article{Stroock1988,
author = {Stroock, Daniel W.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {second order partial differential operator; measurable, symmetric matrix- valued function; ellipticity; Feller continuous Markov semigroup; Aronson's Estimate; perturbation of divergence form operators},
language = {eng},
pages = {316-347},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Diffusion semigroups corresponding to uniformly elliptic divergence form operators},
url = {http://eudml.org/doc/113641},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Stroock, Daniel W.
TI - Diffusion semigroups corresponding to uniformly elliptic divergence form operators
JO - Séminaire de probabilités de Strasbourg
PY - 1988
PB - Springer - Lecture Notes in Mathematics
VL - 22
SP - 316
EP - 347
LA - eng
KW - second order partial differential operator; measurable, symmetric matrix- valued function; ellipticity; Feller continuous Markov semigroup; Aronson's Estimate; perturbation of divergence form operators
UR - http://eudml.org/doc/113641
ER -
References
top- [A] D.G. Aronson, Bounds on the fundamental solution of a parabolic equation, Bull. Am. Math. Soc.73 (1967), 890-896. Zbl0153.42002MR217444
- [DG] E. De Giorgi, Sulle differentiabilità e l'analiticità degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (III) (1957), 25-43. Zbl0084.31901
- [F.-S.] E. Fabes and D. Stroock, A new proof of Moser's parabolic Harnack Inequality using the old ideas of Nash, Arch. for Ratl. Mech. and Anal.96, no. 4 (1986), 327-338. Zbl0652.35052MR855753
- [M] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101-134. Zbl0149.06902MR159139
- [N] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958), 931-954. Zbl0096.06902MR100158
Citations in EuDML Documents
top- Bogdan Iftimie, Étienne Pardoux, Andrey Piatnitski, Homogenization of a singular random one-dimensional PDE
- Mireille Bossy, Nicolas Champagnat, Sylvain Maire, Denis Talay, Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics
- Rémi Rhodes, Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix
- Arturo Kohatsu-Higa, Akihiro Tanaka, A Malliavin calculus method to study densities of additive functionals of SDE’s with irregular drifts
- Lian Shen, On ballistic diffusions in random environment
- Daniel W. Stroock, Weian Zheng, Markov chain approximations to symmetric diffusions
- Valentin Konakov, Stéphane Menozzi, Stanislav Molchanov, Explicit parametrix and local limit theorems for some degenerate diffusion processes
- Pierre Étoré, Antoine Lejay, A Donsker theorem to simulate one-dimensional processes with measurable coefficients
- Tom Schmitz, Diffusions in random environment and ballistic behavior
- Antoine Lejay, Stochastic differential equations driven by processes generated by divergence form operators II: convergence results
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.