Uniqueness of Gibbs measures relative to brownian motion
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 5, page 877-889
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBetz, Volker, and Lőrinczi, József. "Uniqueness of Gibbs measures relative to brownian motion." Annales de l'I.H.P. Probabilités et statistiques 39.5 (2003): 877-889. <http://eudml.org/doc/77784>.
@article{Betz2003,
author = {Betz, Volker, Lőrinczi, József},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gibbs measure; diffusion process; Brownian motion},
language = {eng},
number = {5},
pages = {877-889},
publisher = {Elsevier},
title = {Uniqueness of Gibbs measures relative to brownian motion},
url = {http://eudml.org/doc/77784},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Betz, Volker
AU - Lőrinczi, József
TI - Uniqueness of Gibbs measures relative to brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 5
SP - 877
EP - 889
LA - eng
KW - Gibbs measure; diffusion process; Brownian motion
UR - http://eudml.org/doc/77784
ER -
References
top- [1] G. Benfatto, E. Presutti, M. Pulvirenti, DLR Measures for one-dimensional harmonic systems, Z. Wahr. Geb.41 (1978) 305-312. Zbl0355.60063MR467969
- [2] V. Betz, Existence of Gibbs measures relative to Brownian motion, Markov Proc. Related Fields1 (2002) 1-1, To appear. Zbl1017.60041MR1973322
- [3] V. Betz, F. Hiroshima, J. Lőrinczi, R.A. Minlos, H. Spohn, Ground state properties of the Nelson Hamiltonian – A Gibbs measure-based approach, Rev. Math. Phys.14 (2002) 173-198. Zbl1029.81022
- [4] K. Broderix, D. Hundertmark, H. Leschke, Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys.12 (2000) 181-255. Zbl0961.81006MR1756112
- [5] R. Carmona, Pointwise bounds for Schrödinger eigenstates, Comm. Math. Phys.62 (1978) 97-106. Zbl0403.47016MR505706
- [6] Ph. Courrège, P. Renouard, Oscillateurs anharmoniques, mesures quasi-invariantes sur C(R,R) et théorie quantique des champs en dimension 1, Astérisque (1975) 22-23. Zbl0316.60009
- [7] J.T. Cox, On one-dimensional diffusions with time parameter set (−∞,∞), Ann. Probab.5 (1977) 807-813. Zbl0376.60078
- [8] E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal.59 (1984) 335-395. Zbl0568.47034MR766493
- [9] H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, Berlin, 1988. Zbl0657.60122MR956646
- [10] Y. Hariya, A new approach to construct Gibbs measures on C(R, Rd), Preprint, 2001.
- [11] K. Iwata, Reversible measures of a P(φ)1 time evolution, Probabilistic Methods in Mathematical Physics, Proc. Taniguchi Symp., Katata-Kyoto, Academic Press, pp. 195–209. Zbl0654.60101
- [12] J. Lőrinczi, R.A. Minlos, Gibbs measures for Brownian paths under the effect of an external and a small pair potential, J. Stat. Phys.105 (2001) 607-649. Zbl1174.81325MR1871659
- [13] J. Lőrinczi, R.A. Minlos, H. Spohn, The infrared behavior in Nelson's model of a quantum particle coupled to a massless scalar field, Ann. Henri Poincaré3 (2002) 1-28. Zbl1172.81330MR1914143
- [14] J. Lőrinczi, R.A. Minlos, H. Spohn, Infrared regular representation of the three dimensional massless Nelson model, Lett. Math. Phys.59 (2002) 189-198. Zbl0996.82003MR1904098
- [15] H. Osada, H. Spohn, Gibbs measures relative to Brownian motion, Ann. Probab.27 (1999) 1183-1207. Zbl0965.60095MR1733145
- [16] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators, Academic Press, London, 1978. Zbl0401.47001MR493421
- [17] S. Roelly, H. Zessin, Sur la mécanique statistique d'une particule brownienne sur le tore, in: Séminaire de Probabilités XXV, Lecture Notes in Math., 1485, Springer, 1991, pp. 291-310. Zbl0747.60100MR1187787
- [18] G. Royer, Unicité de certaines mesures quasi-invariantes sur C(R), Ann. Scient. École Normale Sup. Serie 48 (1975) 319-338. Zbl0351.60004MR390161
- [19] G. Royer, M. Yor, Représentation intégrale de certaines mesures quasi-invariantes sur C(R) ; mesures extrémales et propriété de Markov, Ann. Inst. Fourier (Grenoble)26 (2) (1976) 7-24. Zbl0295.28025MR447517
- [20] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979. Zbl0434.28013MR544188
- [21] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc.7 (1982) 447-526. Zbl0524.35002MR670130
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.