Is the fuzzy Potts model gibbsian?

Olle Häggström

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 5, page 891-917
  • ISSN: 0246-0203

How to cite

top

Häggström, Olle. "Is the fuzzy Potts model gibbsian?." Annales de l'I.H.P. Probabilités et statistiques 39.5 (2003): 891-917. <http://eudml.org/doc/77785>.

@article{Häggström2003,
author = {Häggström, Olle},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fuzzy Potts model; Gibbs measure; quasilocality; random-cluster representation},
language = {eng},
number = {5},
pages = {891-917},
publisher = {Elsevier},
title = {Is the fuzzy Potts model gibbsian?},
url = {http://eudml.org/doc/77785},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Häggström, Olle
TI - Is the fuzzy Potts model gibbsian?
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 5
SP - 891
EP - 917
LA - eng
KW - fuzzy Potts model; Gibbs measure; quasilocality; random-cluster representation
UR - http://eudml.org/doc/77785
ER -

References

top
  1. [1] M. Aizenman, J.T. Chayes, L. Chayes, C.M. Newman, Discontinuity of the magnetization in one-dimensional 1/|x−y|2 Ising and Potts models, J. Stat. Phys.50 (1988) 1-40. Zbl1084.82514
  2. [2] M. Aizenman, H. Kesten, C.M. Newman, Uniqueness of the infinite cluster and continuity of connectivity functions for short- and long-range percolation, Comm. Math. Phys.111 (1987) 505-532. Zbl0642.60102MR901151
  3. [3] D.J. Barsky, G.R. Grimmett, C.M. Newman, Percolation in half-spaces: equality of critical densities and continuity of the percolation probability, Probab. Theory Related Fields90 (1991) 111-148. Zbl0727.60118MR1124831
  4. [4] J. van den Berg, C. Maes, Disagreement percolation in the study of Markov fields, Ann. Probab.22 (1994) 749-763. Zbl0814.60096MR1288130
  5. [5] L. Chayes, Percolation and ferromagnetism on Z2: the q-state Potts cases, Stochastic Process. Appl.65 (1996) 209-216. Zbl0889.60096MR1425356
  6. [6] A.C.D. van Enter, On the possible failure of the Gibbs property for measures on lattice systems, Markov Proc. Related Fields2 (1996) 209-224. Zbl0878.60064MR1418413
  7. [7] A.C.D. van Enter, R. Fernández, R. Kotecký, Pathological behavior of renormalization-group maps at high fields and above the transition temperature, J. Stat. Phys.79 (1995) 969-992. Zbl1081.82558MR1330368
  8. [8] A.C.D. van Enter, R. Fernández, A.D. Sokal, Regularity properties of position-space renormalization group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys.72 (1993) 879-1167. Zbl1101.82314MR1241537
  9. [9] A.C.D. van Enter, C. Maes, R.H. Schonmann, S. Shlosman, The Griffiths singularity random field, in: Minlos R., Suhov Yu., Shlosman S. (Eds.), On Dobrushin's Way. From Probability to Statistical Mechanics, American Mathematical Society, 2000, pp. 59-70. Zbl0960.60099MR1766342
  10. [10] A.C.D. van Enter, C. Maes, S. Shlosman, Dobrushin's program on Gibbsianity restoration: weakly Gibbs and almost Gibbs random fields, in: Minlos R., Suhov Yu., Shlosman S. (Eds.), On Dobrushin's Way. From Probability to Statistical Mechanics, American Mathematical Society, 2000, pp. 51-58. Zbl0960.60099
  11. [11] R. Fernández, C.-E. Pfister, Global specifications and nonquasilocality of projections of Gibbs measures, Ann. Probab.25 (1997) 1284-1315. Zbl0895.60096MR1457620
  12. [12] C.M. Fortuin, P.W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica57 (1972) 536-564. MR359655
  13. [13] H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, New York, 1988. Zbl0657.60122MR956646
  14. [14] H.-O. Georgii, O. Häggström, C. Maes, The random geometry of equilibrium phases, in: Domb C., Lebowitz J.L. (Eds.), Phase Transitions and Critical Phenomena, Vol. 18, Academic Press, London, 2001, pp. 1-142. MR2014387
  15. [15] G.R. Grimmett, The stochastic random-cluster process, and the uniqueness of random-cluster measures, Ann. Probab.23 (1995) 1461-1510. Zbl0852.60105MR1379156
  16. [16] G.R. Grimmett, Percolation, Springer, New York, 1999. Zbl0926.60004
  17. [17] O. Häggström, Random-cluster representations in the study of phase transitions, Markov Proc. Related Fields4 (1998) 275-321. Zbl0922.60088MR1670023
  18. [18] O. Häggström, Positive correlations in the fuzzy Potts model, Ann. Appl. Probab.9 (1999) 1149-1159. Zbl0957.60099MR1728557
  19. [19] O. Häggström, Coloring percolation clusters at random, Stochastic Process. Appl.96 (2001) 213-242. Zbl1058.60090MR1865356
  20. [20] O. Häggström, J. Jonasson, R. Lyons, Coupling and Bernoullicity in random-cluster and Potts models, Bernoulli8 (2002) 275-294. Zbl1012.60086MR1913108
  21. [21] C. Külske, (Non-)Gibbsianness and phase transitions in random lattic spin models, Markov Proc. Related Fields5 (1999) 357-383. Zbl0953.60097MR1734240
  22. [22] C. Külske, Weakly Gibbsian representations for joint measures of quenched lattice spin models, Probab. Theory Related Fields119 (2001) 1-30. Zbl1052.82016MR1813038
  23. [23] H. Künsch, S. Geman, A. Kehagias, Hidden Markov random fields, Ann. Appl. Probab.5 (1995) 577-602. Zbl0842.60046MR1359820
  24. [24] L. Laanait, A. Messager, J. Ruiz, Phase coexistence and surface tensions for the Potts model, Comm. Math. Phys.105 (1986) 527-545. MR852089
  25. [25] C. Maes, K. Vande Velde, The fuzzy Potts model, J. Phys. A28 (1995) 4261-4271. Zbl0868.60081MR1351929
  26. [26] C.M. Newman, L.S. Schulman, Infinite clusters in percolation models, J. Stat. Phys.26 (1981) 26-628. Zbl0509.60095MR648202
  27. [27] A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields104 (1996) 427-466. Zbl0842.60022MR1384040
  28. [28] R.H. Swendsen, J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett.58 (1987) 86-88. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.