Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter

A. Budhiraja

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 6, page 919-941
  • ISSN: 0246-0203

How to cite

top

Budhiraja, A.. "Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter." Annales de l'I.H.P. Probabilités et statistiques 39.6 (2003): 919-941. <http://eudml.org/doc/77790>.

@article{Budhiraja2003,
author = {Budhiraja, A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Nonlinear filtering; Invariant measures; Asymptotic stability; Measure valued processes},
language = {eng},
number = {6},
pages = {919-941},
publisher = {Elsevier},
title = {Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter},
url = {http://eudml.org/doc/77790},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Budhiraja, A.
TI - Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 6
SP - 919
EP - 941
LA - eng
KW - Nonlinear filtering; Invariant measures; Asymptotic stability; Measure valued processes
UR - http://eudml.org/doc/77790
ER -

References

top
  1. [1] R. Atar, Exponential stability for nonlinear filtering of diffusion processes in non-compact domain, Ann. Probab.26 (1998) 1552-1574. Zbl0930.93080MR1675039
  2. [2] R. Atar, O. Zeitouni, Exponential stability for nonlinear filtering, Annales de l'Institut H. Poincaré Probabilites et Statistique33 (1997) 697-725. Zbl0888.93057MR1484538
  3. [3] R. Atar, O. Zeitouni, Lyapunov exponents for finite state nonlinear filtering, SIAM J. Control Optim.35 (1997) 36-55. Zbl0940.93073MR1430282
  4. [4] A. Bhatt, A. Budhiraja, R. Karandikar, Markov property and ergodicity of the nonlinear filter, SIAM J. Control Optim.39 (2000) 928-949. Zbl0970.60047MR1786337
  5. [5] A. Bhatt, G. Kallianpur, R. Karandikar, Robustness of the nonlinear filter, Stochastic Process. Appl.81 (1999) 247-254. Zbl0963.60039MR1694557
  6. [6] A. Budhiraja, Ergodic properties of the nonlinear filter, Stochastic Process. Appl.95 (2001) 1-24. Zbl1059.60054MR1847089
  7. [7] A. Budhiraja, H.J. Kushner, Approximation and limit results for nonlinear filters over an infinite time interval, SIAM J. Control Optim.37 (1997) 1946-1979. Zbl0934.93064MR1720146
  8. [8] A. Budhiraja, H.J. Kushner, Robustness of nonlinear filters over the infinite time interval, SIAM J. Control Optim.36 (1998) 1618-1637. Zbl0915.93063MR1626884
  9. [9] A. Budhiraja, H.J. Kushner, Approximation and limit results for nonlinear filters over an infinite time interval: Part II, random sampling algorithms, SIAM J. Control Optim.38 (2000) 1874-1908. Zbl1031.93148MR1776660
  10. [10] A. Budhiraja, H.J. Kushner, Monte Carlo algorithms and asymptotic problems in nonlinear filtering, in: Stochastics in Finite/Infinite Dimensions, Trends Math., Birkhäuser, Boston, 2001, pp. 59-87. Zbl1129.93535MR1797081
  11. [11] A. Budhiraja, D. Ocone, Exponential stability of discrete time filters without signal ergodicity, System Control Lett.30 (1997) 185-193. Zbl0901.93066MR1455877
  12. [12] A. Budhiraja, D. Ocone, Exponential stability in discrete time filtering for non-ergodic signals, Stochastic Process. Appl.82 (1999) 245-257. Zbl1056.93065MR1700008
  13. [13] P. Chigansky, R. Liptser, Private communication. 
  14. [14] P. Chigansky, P. Baxendale, R. Liptser, Asymptotic stability of the Wonham filter. Ergodic and nonergodic signals, Preprint in Arxiv. Zbl1101.93074MR2086177
  15. [15] F. Cérou, Long time asymptotics for some dynamical noise free non linear filtering problems, Rapport de Recherche 2446, INRIA, December, 1994. Zbl0842.93069
  16. [16] J.M.C. Clark, D.L. Ocone, C. Coumarbatch, Relative entropy and error bounds for filtering of Markov processes, Math. Control Signals Syst.12 (1999) 346-360. Zbl0940.93072MR1728373
  17. [17] G. Da Prato, M. Fuhrman, P. Malliavin, Asymptotic ergodicity for the Zakai filtering equation, C. R. Acad. Sci. Paris Serie I321 (1995) 613-616. Zbl0838.60039MR1356563
  18. [18] P. Del Moral, A. Guionnet, On the stability of measure valued processes with applications to filtering, C. R. Acad. Sci. Paris Serie I329 (1999) 429-434. Zbl0935.92001MR1710091
  19. [19] B. Delyon, O. Zeitouni, Lyapunov exponents for filtering problems, in: Applied Stochastic Analysis (London, 1989), Stochastics Monogr., 5, Gordon and Breach, New York, 1991, pp. 511-521. Zbl0738.60033MR1108433
  20. [20] G. Kallianpur, Stochastic Filtering Theory, Springer-Verlag, New York, 1980. Zbl0458.60001MR583435
  21. [21] R.L. Karandikar, On pathwise stochastic integration, Stochastic Process. Appl.57 (1995) 11-18. Zbl0816.60047MR1327950
  22. [22] H. Kunita, Asymptotic behavior of the nonlinear filtering errors of Markov processes, J. Multivariate Anal.1 (1971) 365-393. Zbl0245.93027MR301812
  23. [23] H. Kunita, Ergodic properties of nonlinear filtering processes, in: Alexander K.C., Watkins J.C. (Eds.), Spatial Stochastic Processes, 1991. Zbl0742.60062MR1144099
  24. [24] F. Le Gland, L. Mevel, Exponential forgetting and geometric ergodicity in hidden Markov models, Math. Control Signals Syst.13 (2000) 63-93. Zbl0941.93053MR1742140
  25. [25] F. Le Gland, N. Oudjane, A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals, Preprint. Zbl1060.93094MR1989630
  26. [26] D. Ocone, Asymptotic stability of Benes filters, Stochastic Anal. Appl.17 (1999) 1053-1074. Zbl0945.60032MR1721933
  27. [27] D. Ocone, Entropy inequalities and entropy dynamics in nonlinear filtering of diffusion processes, in: McEneaney W., Yin G., Zhang Q. (Eds.), Stochastic Analysis, Control, Optimization and Applications, 1999. Zbl0920.93036MR1702976
  28. [28] D. Ocone, E. Pardoux, Asymptotic stability of the optimal filter with respect to its initial condition, SIAM J. Control Optim.34 (1996) 226-243. Zbl1035.93508MR1372912
  29. [29] L. Stettner, On invariant measures of filtering processes, in: Helmes K., Christopeit N., Kohlmann M. (Eds.), Stochastic Differential Systems, Proc. 4th Bad Honnef Conf., 1988, Lecture Notes in Control and Inform Sci., 1989, pp. 279-292. Zbl0683.93082MR1236074
  30. [30] L. Stettner, Invariant measures of pair: State, approximate filtering process, Colloq. Math.LXII (1991) 347-352. Zbl0795.60028MR1142935
  31. [31] H. Totoki, A class of special flows, Z. Wahr. Verw. Geb.15 (1970) 157-167. Zbl0193.45903MR279279
  32. [32] H.V. Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ algebras, Ann. Inst. Henri Poincaré B19 (1) (1983) 91-100. Zbl0509.60002
  33. [33] D. Williams, Probability with Martingales, Cambridge University Press, 1991. Zbl0722.60001MR1155402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.