On long time almost sure asymptotics of renormalized branching diffusion processes

Nicolas Fournier; Bernard Roynette

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 6, page 979-991
  • ISSN: 0246-0203

How to cite

top

Fournier, Nicolas, and Roynette, Bernard. "On long time almost sure asymptotics of renormalized branching diffusion processes." Annales de l'I.H.P. Probabilités et statistiques 39.6 (2003): 979-991. <http://eudml.org/doc/77792>.

@article{Fournier2003,
author = {Fournier, Nicolas, Roynette, Bernard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Branching diffusion processes; Long time behaviour},
language = {eng},
number = {6},
pages = {979-991},
publisher = {Elsevier},
title = {On long time almost sure asymptotics of renormalized branching diffusion processes},
url = {http://eudml.org/doc/77792},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Fournier, Nicolas
AU - Roynette, Bernard
TI - On long time almost sure asymptotics of renormalized branching diffusion processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 6
SP - 979
EP - 991
LA - eng
KW - Branching diffusion processes; Long time behaviour
UR - http://eudml.org/doc/77792
ER -

References

top
  1. [1] N. Dunford, J. Schwartz, Linear Operators, Part II, Spectral Theory, Selfadjoint Operators in Hilbert Space, Reprint of the 1963 original, Wiley Classics Library, 1988. Zbl0128.34803MR1009163
  2. [2] E.B. Dynkin, Branching particle systems and superprocesses, Ann. Probab.19 (3) (1991) 1157-1194. Zbl0732.60092MR1112411
  3. [3] J. Engländer, D. Turaev, A scaling limit theorem for a class of superdiffusions, Ann. Probab.30 (2) (2002) 683-722. Zbl1014.60080MR1905855
  4. [4] C. Fefferman, A. Sanchez-Calle, Fundamental solutions for second order subelliptic operators, Ann. of Math.124 (1986) 247-272. Zbl0613.35002MR855295
  5. [5] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1989. Zbl0684.60040MR1011252
  6. [6] H. Kesten, B. Stigum, A limit theorem for multidimensional Galton–Watson processes, Ann. Math. Statist.37 (1966) 1211-1223. Zbl0203.17401
  7. [7] T. Kurtz, R. Lyons, R. Pemantle, Y. Peres, A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes, in: Athreya K., Jagers P. (Eds.), Classical and Modern Branching Processes (Minneapolis, 1994), IMA Vol. Math. Appl., 84, Springer, New York, 1997, pp. 181-185. Zbl0868.60068
  8. [8] R.G. Pinsky, Transience, reccurence and local extinction properties of the support for supercritical finite measure-valued diffusions, Ann. Probab.24 (1) (1996) 237-267. Zbl0854.60087MR1387634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.