A note on the two-sided regulated random walk

A. Manita; F. Simonot

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 1, page 43-52
  • ISSN: 0246-0203

How to cite

top

Manita, A., and Simonot, F.. "A note on the two-sided regulated random walk." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 43-52. <http://eudml.org/doc/77798>.

@article{Manita2004,
author = {Manita, A., Simonot, F.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov chain; regulated random walk; stochastic ordering; convergence rate},
language = {eng},
number = {1},
pages = {43-52},
publisher = {Elsevier},
title = {A note on the two-sided regulated random walk},
url = {http://eudml.org/doc/77798},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Manita, A.
AU - Simonot, F.
TI - A note on the two-sided regulated random walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 43
EP - 52
LA - eng
KW - Markov chain; regulated random walk; stochastic ordering; convergence rate
UR - http://eudml.org/doc/77798
ER -

References

top
  1. [1] S. Asmussen, Applied Probability and Queues, Wiley, 1987. Zbl0624.60098MR889893
  2. [2] A.A. Borovkov, Asymptotic Methods in Queuing Theory, Wiley, 1984. Zbl0544.60085MR745620
  3. [3] D. Gibson, E. Seneta, Monotone infinite stochastic matrices and their augmented truncations, Stochastic Process. Appl.24 (1987) 287-292. Zbl0623.60089MR893176
  4. [4] J.M. Harrison, Brownian Motion and Stochastic Flow Systems, Krieger Publishing Company, Malabar, FL, 1990. Zbl0716.60092MR1092214
  5. [5] J.F. Hayes, Modeling and Analysis of Computer Communications Networks, Plenum Press, New York, 1984. 
  6. [6] D.P. Heyman, W. Whitt, Limits of queues as the waiting room grows, QUESTA5 (1989) 381-392. Zbl0684.60073MR1030477
  7. [7] D.P. Heyman, Approximating the stationary distribution of an infinite stochastic matrix, J. Appl. Probab.28 (1991) 96-103. Zbl0721.60070MR1090450
  8. [8] V.V. Kalashnikov, Mathematical Methods in Queuing Theory, Kluwer Academic, 1994. Zbl0836.60098MR1319595
  9. [9] V.S. Korolyuk, Boundary Problems for Compound Poisson Process, Naukova Dumka, Kiev, 1975. Zbl0372.60069MR402939
  10. [10] J. Mehdi, Stochastic Models in Queueing Theory, Academic Press, 1991. Zbl0743.60100
  11. [11] N.U. Prabhu, Stochastic Storage Processes, Springer-Verlag, New York, 1980. Zbl0453.60094MR602329
  12. [12] F. Simonot, Sur l'approximation de la distribution stationnaire d'une chaîne de Markov stochastiquement monotone, Stochastic Process. Appl.56 (1995) 133-149. Zbl0820.60051MR1324326
  13. [13] F. Simonot, Y.Q. Song, Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices, J. Appl. Probab.33 (1996) 974-985. Zbl0867.60041MR1416220
  14. [14] F. Simonot, Moment based approximation for the stationary distribution of a random walk in Z+ with an application to the M/G/1/n queueing system, J. Appl. Probab.37 (2000) 290-299. Zbl0959.60030MR1761680
  15. [15] F. Simonot, A.D. Manita, Convergence time to equilibrium for nonhomogeneous stochastically monotone Markov chains, Preprint 9, Lyapounov French–Russian Institute, Moscow, 2001. 
  16. [16] D. Stoyan, Comparison Methods for Queues and Other Stochastic Models, Wiley, 1983. Zbl0536.60085MR754339
  17. [17] H.C. Tijms, Stochastic Modelling and Analysis, Wiley, 1986. MR847718
  18. [18] R.L. Tweedie, Truncation Approximations of Invariant Measures for Markov Chains, J. Appl. Probab.35 (1998) 517-536. Zbl0919.60065MR1659488
  19. [19] D. Wolf, Approximation of the invariant probability distribution of an infinite stochastic matrix, Adv. Appl. Probab.12 (1980) 710-726. Zbl0443.60030MR578845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.