Poisson trees, succession lines and coalescing random walks

P. A. Ferrari; C. Landim; H. Thorisson

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 2, page 141-152
  • ISSN: 0246-0203

How to cite

top

Ferrari, P. A., Landim, C., and Thorisson, H.. "Poisson trees, succession lines and coalescing random walks." Annales de l'I.H.P. Probabilités et statistiques 40.2 (2004): 141-152. <http://eudml.org/doc/77803>.

@article{Ferrari2004,
author = {Ferrari, P. A., Landim, C., Thorisson, H.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poisson processes; random trees; Palm measure; coalescing random walks; point-stationarity; Palm theory},
language = {eng},
number = {2},
pages = {141-152},
publisher = {Elsevier},
title = {Poisson trees, succession lines and coalescing random walks},
url = {http://eudml.org/doc/77803},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Ferrari, P. A.
AU - Landim, C.
AU - Thorisson, H.
TI - Poisson trees, succession lines and coalescing random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 2
SP - 141
EP - 152
LA - eng
KW - Poisson processes; random trees; Palm measure; coalescing random walks; point-stationarity; Palm theory
UR - http://eudml.org/doc/77803
ER -

References

top
  1. [1] K.S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Probab.23 (1) (1995) 87-104. Zbl0827.60079MR1330762
  2. [2] R. Arratia, Coalescing Brownian motions and the voter model on Z, Unpublished manuscript, 1981, available from rarratia@math.usc.edu. 
  3. [3] R. Arratia, Coalescing Brownian motions on the line, Phd Thesis. Univ. of Madison, Wisconsin, 1981. 
  4. [4] R.M. Burton, M.S. Keane, Density and uniqueness in percolation, Comm. Math. Phys.121 (1989) 501-505. Zbl0662.60113MR990777
  5. [5] P.A. Ferrari, L.R.G. Fontes, X.-Y. Wu, Poisson trees converge to Brownian web, http://arxiv.org/abs/math.PR/0304247. Zbl1073.60094
  6. [6] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, http://arxiv.org/abs/math.PR/0304119. Zbl1105.60075MR2094432
  7. [7] S. Gangopadhyay, R. Roy, A. Sarkar, Random oriented trees: a model of drainage networks, Preprint Indian Statistical Institute isid/ms/2002/05 , http://www.isid.ac.in/statmath/eprints/2002/isid200205.pdf. MR2071422
  8. [8] O. Häggström, R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms9 (3) (1996) 295-315. Zbl0866.60088MR1606845
  9. [9] A.E. Holroyd, Y. Peres, Trees and matchings from point processes, http://arxiv.org/abs/math.PR/0211455. Zbl1060.60048MR1961286
  10. [10] C.M. Newman, D.L. Stein, Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B46 (1992) 973-982. 
  11. [11] C.M. Newman, D.L. Stein, Spin-glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett.72 (1994) 2286-2289. 
  12. [12] I. Rodriguez-Iturbe, A. Rinaldo, Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York, 1997. 
  13. [13] H. Thorisson, Point-stationarity in d dimensions and Palm theory, Bernoulli5 (5) (1999) 797-831. Zbl0953.60029MR1715440
  14. [14] H. Thorisson, Coupling, Stationarity, and Regeneration. Probability and its Applications, Springer-Verlag, New York, 2000. Zbl0949.60007MR1741181
  15. [15] B. Tóth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields111 (3) (1998) 375-452. Zbl0912.60056MR1640799

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.