Poisson trees, succession lines and coalescing random walks
P. A. Ferrari; C. Landim; H. Thorisson
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 2, page 141-152
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFerrari, P. A., Landim, C., and Thorisson, H.. "Poisson trees, succession lines and coalescing random walks." Annales de l'I.H.P. Probabilités et statistiques 40.2 (2004): 141-152. <http://eudml.org/doc/77803>.
@article{Ferrari2004,
author = {Ferrari, P. A., Landim, C., Thorisson, H.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poisson processes; random trees; Palm measure; coalescing random walks; point-stationarity; Palm theory},
language = {eng},
number = {2},
pages = {141-152},
publisher = {Elsevier},
title = {Poisson trees, succession lines and coalescing random walks},
url = {http://eudml.org/doc/77803},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Ferrari, P. A.
AU - Landim, C.
AU - Thorisson, H.
TI - Poisson trees, succession lines and coalescing random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 2
SP - 141
EP - 152
LA - eng
KW - Poisson processes; random trees; Palm measure; coalescing random walks; point-stationarity; Palm theory
UR - http://eudml.org/doc/77803
ER -
References
top- [1] K.S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Probab.23 (1) (1995) 87-104. Zbl0827.60079MR1330762
- [2] R. Arratia, Coalescing Brownian motions and the voter model on Z, Unpublished manuscript, 1981, available from rarratia@math.usc.edu.
- [3] R. Arratia, Coalescing Brownian motions on the line, Phd Thesis. Univ. of Madison, Wisconsin, 1981.
- [4] R.M. Burton, M.S. Keane, Density and uniqueness in percolation, Comm. Math. Phys.121 (1989) 501-505. Zbl0662.60113MR990777
- [5] P.A. Ferrari, L.R.G. Fontes, X.-Y. Wu, Poisson trees converge to Brownian web, http://arxiv.org/abs/math.PR/0304247. Zbl1073.60094
- [6] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, http://arxiv.org/abs/math.PR/0304119. Zbl1105.60075MR2094432
- [7] S. Gangopadhyay, R. Roy, A. Sarkar, Random oriented trees: a model of drainage networks, Preprint Indian Statistical Institute isid/ms/2002/05 , http://www.isid.ac.in/statmath/eprints/2002/isid200205.pdf. MR2071422
- [8] O. Häggström, R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms9 (3) (1996) 295-315. Zbl0866.60088MR1606845
- [9] A.E. Holroyd, Y. Peres, Trees and matchings from point processes, http://arxiv.org/abs/math.PR/0211455. Zbl1060.60048MR1961286
- [10] C.M. Newman, D.L. Stein, Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B46 (1992) 973-982.
- [11] C.M. Newman, D.L. Stein, Spin-glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett.72 (1994) 2286-2289.
- [12] I. Rodriguez-Iturbe, A. Rinaldo, Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York, 1997.
- [13] H. Thorisson, Point-stationarity in d dimensions and Palm theory, Bernoulli5 (5) (1999) 797-831. Zbl0953.60029MR1715440
- [14] H. Thorisson, Coupling, Stationarity, and Regeneration. Probability and its Applications, Springer-Verlag, New York, 2000. Zbl0949.60007MR1741181
- [15] B. Tóth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields111 (3) (1998) 375-452. Zbl0912.60056MR1640799
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.