An infinite dimensional central limit theorem for correlated martingales

Ilie Grigorescu

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 2, page 167-196
  • ISSN: 0246-0203

How to cite

top

Grigorescu, Ilie. "An infinite dimensional central limit theorem for correlated martingales." Annales de l'I.H.P. Probabilités et statistiques 40.2 (2004): 167-196. <http://eudml.org/doc/77805>.

@article{Grigorescu2004,
author = {Grigorescu, Ilie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gaussian random field; Fluctuations from hydrodynamic limit; Central limit theorem},
language = {eng},
number = {2},
pages = {167-196},
publisher = {Elsevier},
title = {An infinite dimensional central limit theorem for correlated martingales},
url = {http://eudml.org/doc/77805},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Grigorescu, Ilie
TI - An infinite dimensional central limit theorem for correlated martingales
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 2
SP - 167
EP - 196
LA - eng
KW - Gaussian random field; Fluctuations from hydrodynamic limit; Central limit theorem
UR - http://eudml.org/doc/77805
ER -

References

top
  1. [1] V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. Zbl0913.60035MR1642391
  2. [2] C.C. Chang, H.-T. Yau, Fluctuations of one-dimensional Ginzburg–Landau models in nonequilibrium, Comm. Math. Phys.145 (1992) 209-234. Zbl0754.76006
  3. [3] N. Dunford, J. Schwartz, Linear Operators, Part I, General Theory, Wiley, 1988. Zbl0635.47001MR1009162
  4. [4] G. Gielis, A. Koukkous, C. Landim, Equilibrium fluctuations for zero range processes in random environment, Stochastic Process. Appl.77 (2) (1998) 187-205. Zbl0935.60082MR1649004
  5. [5] I. Grigorescu, Self-diffusion for Brownian motions with local interaction, Ann. Probab.27 (3) (1999) 1208-1267. Zbl0961.60099MR1733146
  6. [6] I. Grigorescu, Large scale behavior of a system of interacting diffusions, in: Hydrodynamic Limits and Related Topics (Toronto, ON, 1998), Fields Inst. Commun., vol. 27, Amer. Math. Society, Providence, RI, 2000, pp. 83-93. Zbl1060.82512MR1798645
  7. [7] R. Holley, D.W. Stroock, Central limit phenomena of various interacting systems, Ann. of Math. (2)110 (2) (1979) 333-393. Zbl0393.60018MR549491
  8. [8] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1989. Zbl0684.60040MR1011252
  9. [9] K. Itô, Distribution-valued processes arising from independent Brownian motions, Math. Z.182 (1) (1983) 17-33. Zbl0488.60052MR686883
  10. [10] F. John, Partial Differential Equations, Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1991. Zbl0209.40001
  11. [11] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Springer-Verlag, New York, 1999. Zbl0927.60002MR1707314
  12. [12] J. Quastel, Diffusion of color in the simple exclusion process, Comm. Pure Appl. Math.45 (1998) 321-379. Zbl0769.60097MR1162368
  13. [13] J. Quastel, F. Rezakhanlou, S.R.S. Varadhan, Large deviations for the symmetric simple exclusion process in dimensions d≥3, Probab. Theory Related Fields113 (1) (1999) 1-84. Zbl0928.60087
  14. [14] K. Ravishankar, Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Zd, Stochastic Process. Appl.42 (1) (1992) 31-37. Zbl0754.60127MR1172505
  15. [15] A.N. Shiryaev, Probability, Translated from the Russian by R.P. Boas , Graduate Texts in Math., vol. 95, Springer-Verlag, New York, 1984. Zbl0536.60001MR737192
  16. [16] A.S. Sznitman, A fluctuation result for nonlinear diffusions, in: Infinite-Dimensional Analysis and Stochastic Processes (Bielefeld, 1983), Res. Notes in Math., vol. 124, Pitman, Boston, 1985, pp. 145-160. Zbl0578.60096MR865024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.