An infinite dimensional central limit theorem for correlated martingales
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 2, page 167-196
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGrigorescu, Ilie. "An infinite dimensional central limit theorem for correlated martingales." Annales de l'I.H.P. Probabilités et statistiques 40.2 (2004): 167-196. <http://eudml.org/doc/77805>.
@article{Grigorescu2004,
author = {Grigorescu, Ilie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gaussian random field; Fluctuations from hydrodynamic limit; Central limit theorem},
language = {eng},
number = {2},
pages = {167-196},
publisher = {Elsevier},
title = {An infinite dimensional central limit theorem for correlated martingales},
url = {http://eudml.org/doc/77805},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Grigorescu, Ilie
TI - An infinite dimensional central limit theorem for correlated martingales
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 2
SP - 167
EP - 196
LA - eng
KW - Gaussian random field; Fluctuations from hydrodynamic limit; Central limit theorem
UR - http://eudml.org/doc/77805
ER -
References
top- [1] V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. Zbl0913.60035MR1642391
- [2] C.C. Chang, H.-T. Yau, Fluctuations of one-dimensional Ginzburg–Landau models in nonequilibrium, Comm. Math. Phys.145 (1992) 209-234. Zbl0754.76006
- [3] N. Dunford, J. Schwartz, Linear Operators, Part I, General Theory, Wiley, 1988. Zbl0635.47001MR1009162
- [4] G. Gielis, A. Koukkous, C. Landim, Equilibrium fluctuations for zero range processes in random environment, Stochastic Process. Appl.77 (2) (1998) 187-205. Zbl0935.60082MR1649004
- [5] I. Grigorescu, Self-diffusion for Brownian motions with local interaction, Ann. Probab.27 (3) (1999) 1208-1267. Zbl0961.60099MR1733146
- [6] I. Grigorescu, Large scale behavior of a system of interacting diffusions, in: Hydrodynamic Limits and Related Topics (Toronto, ON, 1998), Fields Inst. Commun., vol. 27, Amer. Math. Society, Providence, RI, 2000, pp. 83-93. Zbl1060.82512MR1798645
- [7] R. Holley, D.W. Stroock, Central limit phenomena of various interacting systems, Ann. of Math. (2)110 (2) (1979) 333-393. Zbl0393.60018MR549491
- [8] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1989. Zbl0684.60040MR1011252
- [9] K. Itô, Distribution-valued processes arising from independent Brownian motions, Math. Z.182 (1) (1983) 17-33. Zbl0488.60052MR686883
- [10] F. John, Partial Differential Equations, Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1991. Zbl0209.40001
- [11] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Springer-Verlag, New York, 1999. Zbl0927.60002MR1707314
- [12] J. Quastel, Diffusion of color in the simple exclusion process, Comm. Pure Appl. Math.45 (1998) 321-379. Zbl0769.60097MR1162368
- [13] J. Quastel, F. Rezakhanlou, S.R.S. Varadhan, Large deviations for the symmetric simple exclusion process in dimensions d≥3, Probab. Theory Related Fields113 (1) (1999) 1-84. Zbl0928.60087
- [14] K. Ravishankar, Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Zd, Stochastic Process. Appl.42 (1) (1992) 31-37. Zbl0754.60127MR1172505
- [15] A.N. Shiryaev, Probability, Translated from the Russian by R.P. Boas , Graduate Texts in Math., vol. 95, Springer-Verlag, New York, 1984. Zbl0536.60001MR737192
- [16] A.S. Sznitman, A fluctuation result for nonlinear diffusions, in: Infinite-Dimensional Analysis and Stochastic Processes (Bielefeld, 1983), Res. Notes in Math., vol. 124, Pitman, Boston, 1985, pp. 145-160. Zbl0578.60096MR865024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.