On the sample paths of diagonal brownian motions on the infinite dimensional torus

A. Bendikov; L. Saloff-Coste

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 2, page 227-254
  • ISSN: 0246-0203

How to cite

top

Bendikov, A., and Saloff-Coste, L.. "On the sample paths of diagonal brownian motions on the infinite dimensional torus." Annales de l'I.H.P. Probabilités et statistiques 40.2 (2004): 227-254. <http://eudml.org/doc/77808>.

@article{Bendikov2004,
author = {Bendikov, A., Saloff-Coste, L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {sample paths; modulus of continuity; diagonal Brownian motion; infinite-dimensional torus; intrinsic distance; law of iterated logarithm},
language = {eng},
number = {2},
pages = {227-254},
publisher = {Elsevier},
title = {On the sample paths of diagonal brownian motions on the infinite dimensional torus},
url = {http://eudml.org/doc/77808},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Bendikov, A.
AU - Saloff-Coste, L.
TI - On the sample paths of diagonal brownian motions on the infinite dimensional torus
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 2
SP - 227
EP - 254
LA - eng
KW - sample paths; modulus of continuity; diagonal Brownian motion; infinite-dimensional torus; intrinsic distance; law of iterated logarithm
UR - http://eudml.org/doc/77808
ER -

References

top
  1. [1] A. Bendikov, Space-homogeneous continuous Markov processes on Abelian groups and harmonic structures, Russian Math. Surveys29 (5) (1974) 215-216. Zbl0315.60040MR410956
  2. [2] A. Bendikov, Potential Theory on Infinite Dimensional Abelian Groups, De Gruyter, Berlin, 1995. Zbl0869.31001MR1445559
  3. [3] A. Bendikov, Symmetric stable semigroups on the infinite dimensional torus, Expositiones Math.13 (1995) 39-79. Zbl0835.31009MR1339813
  4. [4] A. Bendikov, L. Saloff-Coste, On- and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spaces, Amer. J. Math.122 (2000) 1205-1263. Zbl0969.31008MR1797661
  5. [5] A. Bendikov, L. Saloff-Coste, Central Gaussian semigroups of measures with continuous density, J. Funct. Anal.186 (2001) 206-268. Zbl0989.43002MR1863298
  6. [6] A. Bendikov, L. Saloff-Coste, Central Gaussian convolution semigroups on compact groups: a survey, Infinite Dimensional Analysis, Quantum Probability and Related Topics, in press. Zbl1043.60068MR2030215
  7. [7] A. Bendikov, L. Saloff-Coste, On the sample paths of Brownian motions on compact infinite dimensional groups, Ann. Probab.31 (2003) 1464-1493. Zbl1043.60064MR1989440
  8. [8] A. Bendikov, L. Saloff-Coste, On the sample paths of subelliptic diffusions on manifolds, in preparation. Zbl1085.31007
  9. [9] C. Berg, Potential theory on the infinite dimensional torus, Inventiones Math.32 (1976) 49-100. Zbl0371.31007MR402093
  10. [10] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, Cambridge University Press. Zbl0617.26001MR898871
  11. [11] M. Biroli, U. Mosco, Formes de Dirichlet et estimations structurelles dans les milieux discontinus, C. R. Acad. Sci. Paris313 (1991) 593-598. Zbl0760.49004MR1133491
  12. [12] R. Blumenthal, R. Getoor, Markov Processes and Potential Theory, Academic Press, 1968. Zbl0169.49204MR264757
  13. [13] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
  14. [14] A. Dvoretzky, P. Erdös, Some problems on random walk in space, in: Second Berkeley Symp., University of California Press, 1951, pp. 353-367. Zbl0044.14001MR47272
  15. [15] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, 1994. Zbl0838.31001MR1303354
  16. [16] A. Grigor'yan, Escape rate of Brownian motion on Riemannian manifolds, Appl. Anal.71 (1999) 63-89. Zbl1020.58024MR1690091
  17. [17] H. Heyer, Probability Measures on Locally Compact Groups, Ergeb. Math. Grenzgeb., vol. 94, Springer, Berlin, 1977. Zbl0376.60002MR501241
  18. [18] K. Ito, P. McKean, Diffusion Processes and their Sample Paths, Springer, 1974. Zbl0127.09503MR345224
  19. [19] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1994. Zbl0804.60001MR1303781
  20. [20] K.-T. Sturm, On the geometry defined by Dirichlet forms, in: Bolthausen E., (Eds.), Seminar on Stochastic Processes, Random Fields and Applications, Ascona, Progress in Probability, vol. 36, Birkhäuser, 1995, pp. 231-242. Zbl0834.58039MR1360279
  21. [21] K.-T. Sturm, Sharp estimates for capacities and applications to symmetric diffusions, Probab. Theory Related Fields103 (1995) 73-89. Zbl0828.60062MR1347171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.