Moderate deviations for diffusions in a random gaussian shear flow drift

Fabienne Castell

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 3, page 337-366
  • ISSN: 0246-0203

How to cite

top

Castell, Fabienne. "Moderate deviations for diffusions in a random gaussian shear flow drift." Annales de l'I.H.P. Probabilités et statistiques 40.3 (2004): 337-366. <http://eudml.org/doc/77814>.

@article{Castell2004,
author = {Castell, Fabienne},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Large and moderate deviations; Additive functionals of Brownian motion; Random media; Anderson model},
language = {eng},
number = {3},
pages = {337-366},
publisher = {Elsevier},
title = {Moderate deviations for diffusions in a random gaussian shear flow drift},
url = {http://eudml.org/doc/77814},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Castell, Fabienne
TI - Moderate deviations for diffusions in a random gaussian shear flow drift
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 3
SP - 337
EP - 366
LA - eng
KW - Large and moderate deviations; Additive functionals of Brownian motion; Random media; Anderson model
UR - http://eudml.org/doc/77814
ER -

References

top
  1. [1] A. Asselah, F. Castell, Quenched large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Appl.103 (1) (2003) 1-29. Zbl1075.60508MR1947958
  2. [2] A. Asselah, F. Castell, Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields, in press, DOI:10.1007/s00440-003-0276-0. Zbl1043.60018MR2001196
  3. [3] M. Avellaneda, A. Majda, Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys.131 (1990) 381-429. Zbl0703.76042MR1065678
  4. [4] M. Avellaneda, A. Majda, Mathematical models with exact renormalization for turbulent transport II, Comm. Math. Phys.146 (1992) 139-204. Zbl0754.76046MR1163672
  5. [5] M. Biskup, W. König, Long-time tails in the parabolic Anderson model with bounded potential, Ann. Probab.29 (2) (2001) 636-682. Zbl1018.60093MR1849173
  6. [6] H. Brezis, Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. Zbl0511.46001MR697382
  7. [7] R. Carmona, Transport properties of Gaussian velocity fields, in: Real and Stochastic Analysis. Probab. Stochastics Series, CRC, Boca Raton, FL, 1997, pp. 9-63. Zbl0897.60051MR1464221
  8. [8] R. Carmona, L. Xu, Homogenization for time dependent 2-D incompressible Gaussian flows, Ann. Appl. Probab.7 (1) (1997) 265-279. Zbl0879.60063MR1428759
  9. [9] F. Castell, F. Pradeilles, Annealed large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Appl.94 (2001) 171-197. Zbl1051.60028MR1840830
  10. [10] T. Chiyonobu, S. Kusuoka, The large deviation principle for hypermixing processes, Probab. Theory Related Fields78 (4) (1988) 627-649. Zbl0634.60025MR950350
  11. [11] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Applications of Mathematics, vol. 38, Springer, New York, 1998. Zbl0896.60013MR1619036
  12. [12] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I, II, Comm. Pure Appl. Math.28 (1975) 1-47, Comm. Pure Appl. Math.28 (1975) 279-301. Zbl0348.60031MR386024
  13. [13] M.D. Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure Appl. Math.28 (1975) 525-565. Zbl0333.60077MR397901
  14. [14] A. Fannjiang, T. Komorowski, A martingale approach to homogenization of unbounded random flows, Ann. Probab.25 (1997) 1872-1894. Zbl0902.60028MR1487440
  15. [15] A. Fannjiang, T. Komorowski, An invariance principle for diffusion in turbulence, Ann. Probab.27 (2) (1999) 751-781. Zbl0943.60030MR1698963
  16. [16] A. Fannjiang, T. Komorowski, Turbulent diffusion in Markovian flows, Ann. Appl. Probab.9 (3) (1999) 591-610. Zbl0960.60034MR1722274
  17. [17] A. Fannjiang, T. Komorowski, Fractional Brownian motion limit for a model of turbulent transport, Ann. Appl. Probab.10 (2000) 1100-1120. Zbl1073.60532MR1810866
  18. [18] A. Fannjiang, T. Komorowski, Diffusive and nondiffusive limits of transport in nonmixing flows, SIAM J. Appl. Math.62 (3) (2002) 909-923. Zbl0995.60036MR1897728
  19. [19] A. Fannjiang, G. Papanicolaou, Diffusion in turbulence, Probab. Theory Related Fields105 (3) (1996) 279-334. Zbl0847.60062MR1425865
  20. [20] J. Gärtner, W. König, Moment asymptotics for the continuous parabolic Anderson model, Ann. Appl. Probab.10 (1) (2000) 192-217. Zbl1171.60359MR1765208
  21. [21] J. Gärtner, W. König, S.A. Molchanov, Almost sure asymptotics for the continuous parabolic Anderson model, Probab. Theory Related Fields118 (4) (2000) 547-573. Zbl0972.60056MR1808375
  22. [22] J. Gärtner, S.A. Molchanov, Parabolic problems for the Anderson model I. Intermittency and related topics, Comm. Math. Phys.132 (1990) 613-655. Zbl0711.60055MR1069840
  23. [23] J. Gärtner, S.A. Molchanov, Parabolic problems for the Anderson model II. Second order asymptotics ans structure of high peaks, Probab. Theory Related Fields111 (1998) 17-55. Zbl0909.60040MR1626766
  24. [24] D. Horntrop, A. Majda, Subtle statistical behavior in simple models for random advection-diffusion, J. Math. Sci. Univ. Tokyo1 (1) (1994) 23-70. Zbl0813.76073MR1298540
  25. [25] H. Kesten, F. Spitzer, A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Gebiete50 (1) (1979) 5-25. Zbl0396.60037MR550121
  26. [26] T. Komorowski, S. Olla, On the superdiffusive behavior of passive tracer with a Gaussian drift, J. Statist. Phys.108 (3–4) (2002) 647-668. Zbl1158.76329
  27. [27] C. Landim, S. Olla, H.T. Yau, Convection-diffusion equation with space-time ergodic random flow, Probab. Theory Related Fields112 (2) (1998) 203-220. Zbl0914.60070MR1653837
  28. [28] G. Matheron, G. de Marsily, Is transport in porous media always diffusive? A counterexample, Water Resources Res.16 (1980) 901-907. 
  29. [29] F. Merkl, M.V. Wüthrich, Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential, Probab. Theory Related Fields119 (2001) 475-507. Zbl1037.82022MR1826404
  30. [30] F. Merkl, M.V. Wüthrich, Annealed survival asymptotics for Brownian motion in a scaled Poissonian potential, Stochastic Process. Appl.96 (2001) 191-211. Zbl1062.82022MR1865355
  31. [31] F. Merkl, M.V. Wüthrich, Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential, Ann. I.H. Poincaré-PR38 (3) (2002) 253-284. Zbl0996.82036MR1899454
  32. [32] L. Piterbarg, Short-correlation approximation in models of turbulent diffusion, in: Stochastic Models in Geosystems, Minneapolis, MN, 1994, IMA Vol. Math. Appl., vol. 85, Springer, New York, 1997, pp. 313-352. Zbl0866.60073MR1480980
  33. [33] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
  34. [34] A.S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, 1998. Zbl0973.60003MR1717054
  35. [35] M. Talagrand, Sharper bounds for Gaussians and empirical processes, Ann. Probab.22 (1) (1994) 28-76. Zbl0798.60051MR1258865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.