Annealed deviations of random walk in random scenery

Nina Gantert; Wolfgang König; Zhan Shi

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 1, page 47-76
  • ISSN: 0246-0203

How to cite

top

Gantert, Nina, König, Wolfgang, and Shi, Zhan. "Annealed deviations of random walk in random scenery." Annales de l'I.H.P. Probabilités et statistiques 43.1 (2007): 47-76. <http://eudml.org/doc/77924>.

@article{Gantert2007,
author = {Gantert, Nina, König, Wolfgang, Shi, Zhan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random scenery; local time; large deviations; variational formulas},
language = {eng},
number = {1},
pages = {47-76},
publisher = {Elsevier},
title = {Annealed deviations of random walk in random scenery},
url = {http://eudml.org/doc/77924},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Gantert, Nina
AU - König, Wolfgang
AU - Shi, Zhan
TI - Annealed deviations of random walk in random scenery
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 1
SP - 47
EP - 76
LA - eng
KW - random walk in random scenery; local time; large deviations; variational formulas
UR - http://eudml.org/doc/77924
ER -

References

top
  1. [1] A. Asselah, F. Castell, Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields126 (2003) 497-527. Zbl1043.60018MR2001196
  2. [2] A. Asselah, F. Castell, A note on random walk in random scenery, preprint, 2005. Zbl1112.60088
  3. [3] A. Asselah, F. Castell, Self-intersection times for random walk, and random walk in random scenery in dimension d 5 , preprint, 2005. Zbl1116.60057
  4. [4] G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. II, Probab. Theory Related Fields90 (3) (1991) 377-402. Zbl0734.60027MR1133372
  5. [5] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. Zbl0617.26001MR898871
  6. [6] E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries, Ann. Probab.17 (1989) 108-115. Zbl0679.60028MR972774
  7. [7] A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)85 (1979) 17-29, 237, 244. Zbl0417.60027MR535455
  8. [8] A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk, Dokl. Akad. Nauk SSSR246 (4) (1979) 786-787. Zbl0423.60025MR543530
  9. [9] D.C. Brydges, G. Slade, The diffusive phase of a model of self-interacting walks, Probab. Theory Related Fields103 (1995) 285-315. Zbl0832.60096MR1358079
  10. [10] F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift, Ann. Inst. H. Poincaré Probab. Statist.40 (3) (2004) 337-366. Zbl1042.60009MR2060457
  11. [11] F. Castell, F. Pradeilles, Annealed large deviations for diffusions in a random shear flow drift, Stochastic Process Appl.94 (2001) 171-197. Zbl1051.60028MR1840830
  12. [12] X. Chen, Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks, Ann. Probab.32 (4) (2004). Zbl1067.60071MR2094445
  13. [13] X. Chen, W. Li, Large and moderate deviations for intersection local times, Probab. Theory Related Fields128 (2004) 213-254. Zbl1038.60074MR2031226
  14. [14] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Springer, Berlin, 1998. Zbl0896.60013MR1619036
  15. [15] M. Donsker, S.R.S. Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math.32 (1979) 721-747. Zbl0418.60074MR539157
  16. [16] N. Gantert, R. van der Hofstad, W. König, Deviations of a random walk in a random scenery with stretched exponential tails, Stochastic Process. Appl.116 (3) (2006) 480-492. Zbl1100.60056MR2199560
  17. [17] J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl.22 (1) (1977) 24-39. Zbl0375.60033MR471040
  18. [18] J.-P. Kahane, Some Random Series of Functions, second ed., Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR833073
  19. [19] H. Kesten, F. Spitzer, A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Geb.50 (1979) 5-25. Zbl0396.60037MR550121
  20. [20] W. König, P. Mörters, Brownian intersection local times: upper tail asymptotics and thick points, Ann. Probab.30 (2002) 1605-1656. Zbl1032.60073MR1944002
  21. [21] E.H. Lieb, M. Loss, Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., Providence, RI, 2001. Zbl0966.26002MR1817225
  22. [22] M. McLeod, J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA78 (11) (1981) 6592-6595. Zbl0474.35047MR634934
  23. [23] V.V. Petrov, Sums of Independent Random Variables, Springer, Berlin, 1975. Zbl0322.60042MR388499
  24. [24] F. Spitzer, Principles of Random Walk, second ed., Springer, Berlin, 1976. Zbl0359.60003MR388547
  25. [25] K. Uchiyama, Green’s functions for random walks on Z N , Proc. London Math. Soc.77 (3) (1998) 215-240. Zbl0893.60045MR1625467
  26. [26] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.