Martin boundary theory of some quantum random walks

Benoît Collins

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 3, page 367-384
  • ISSN: 0246-0203

How to cite

top

Collins, Benoît. "Martin boundary theory of some quantum random walks." Annales de l'I.H.P. Probabilités et statistiques 40.3 (2004): 367-384. <http://eudml.org/doc/77815>.

@article{Collins2004,
author = {Collins, Benoît},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Martin boundary; quantum random walk; integral representation for positive harmonic functions; quantum probability theory},
language = {eng},
number = {3},
pages = {367-384},
publisher = {Elsevier},
title = {Martin boundary theory of some quantum random walks},
url = {http://eudml.org/doc/77815},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Collins, Benoît
TI - Martin boundary theory of some quantum random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 3
SP - 367
EP - 384
LA - eng
KW - Martin boundary; quantum random walk; integral representation for positive harmonic functions; quantum probability theory
UR - http://eudml.org/doc/77815
ER -

References

top
  1. [1] L. Accardi, A. Frigerio, J.T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci.18 (1) (1982) 97-133. Zbl0498.60099MR660823
  2. [2] S. Baaj, G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C∗-algèbres, Ann. Sci. École Norm. Sup. (4)26 (4) (1993) 425-488. Zbl0804.46078
  3. [3] P. Biane, R. Durrett, Lectures on probability theory, in: Bernard P. (Ed.), Lectures from the Twenty-third Saint-Flour Summer School held August 18–September 4, 1993 , Springer-Verlag, Berlin, 1995. Zbl0822.00009
  4. [4] Ph. Biane, Équation de Choquet–Deny sur le dual d'un groupe compact, Probab. Theory Related Fields94 (1) (1992) 39-51. Zbl0766.46044
  5. [5] P. Biane, Marches de Bernoulli quantiques, in: Séminaire de Probabilités, XXIV, 1988/89, Springer, Berlin, 1990, pp. 329-344. Zbl0701.60103MR1071548
  6. [6] P. Biane, Quantum random walk on the dual of su(n), Probab. Theory Related Fields89 (1) (1991) 117-129. Zbl0746.46058MR1109477
  7. [7] P. Biane, Some properties of quantum Bernoulli random walks, in: Quantum Probability & Related Topics, World Scientific, River Edge, NJ, 1991, pp. 193-203. Zbl0945.81505MR1149826
  8. [8] P. Biane, Minuscule weights and random walks on lattices, in: Quantum Probability & Related Topics, World Scientific, River Edge, NJ, 1992, pp. 51-65. Zbl0787.60089MR1186654
  9. [9] P. Biane, Théorème de Ney–Spitzer sur le dual de su(2), Trans. Amer. Math. Soc.345 (1) (1994) 179-194. Zbl0814.60064
  10. [10] G. Choquet, J. Deny, Sur l'équation de convolution μ=μ∗σ, C. R. Acad. Sci. Paris250 (1960) 799-801. Zbl0093.12802
  11. [11] J. Dixmier, Les C∗-algèbres et leurs représentations, Gauthier-Villars & Cie, Paris, 1964. Zbl0152.32902
  12. [12] E.G. Effros, Z.-J. Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math.5 (5) (1994) 681-723. Zbl0824.17020MR1297413
  13. [13] W. Fulton, Young tableaux, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry. Zbl0878.14034MR1464693
  14. [14] W. Fulton, J. Harris, Representation Theory, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. Zbl0744.22001MR1153249
  15. [15] F. Hiai, M. Izumi, Amenability and strong amenability for fusion algebras with applications to subfactor theory, Internat. J. Math.9 (6) (1998) 669-722. Zbl0978.46043MR1644299
  16. [16] M. Izumi, Actions of compact quantum groups on operator algebras, Sūrikaisekikenkyūsho Kōkyūroku1024 (1998) 55-60, Profound development of operator algebras (Japanese) (Kyoto, 1997). Zbl0960.58004MR1643711
  17. [17] M. Izumi, Actions of compact quantum groups on operator algebras, in: XIIth International Congress of Mathematical Physics (ICMP '97) (Brisbane) , Internat. Press, Cambridge, MA, 1999, pp. 249-253. MR1697285
  18. [18] M. Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math.169 (1) (2002) 1-57. Zbl1037.46056MR1916370
  19. [19] M. Izumi, Non-commutative Poisson boundaries and compact quantum group actions, November 29, 2000. Zbl1037.46056
  20. [20] J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains, Graduate Texts in Mathematics, vol. 40, Springer-Verlag, New York, 1976, With a chapter on Markov random fields, by D. Griffeath. Zbl0348.60090MR407981
  21. [21] P.-A. Meyer, Éléments de probabilités quantiques. I–V, in: Séminaire de Probabilités, XX, 1984/85 , Springer, Berlin, 1986, pp. 186-312. Zbl0604.60001
  22. [22] P.-A. Meyer, Éléments de probabilités quantiques. VI–VIII, in: Séminaire de Probabilités, XXI, Springer, Berlin, 1987, pp. 33-78. Zbl0633.60074
  23. [23] P.-A. Meyer, Eléments de probabilités quantiques. IX. Calculs antisymétriques et “supersymétriques” en probabilités, in: Séminaire de Probabilités, XXII, Springer, Berlin, 1988, pp. 101-123. Zbl0659.60077
  24. [24] P.-A. Meyer, Éléments de probabilités quantiques. X. Calculs avec des noyaux discrets, in: Séminaire de Probabilités, XXII, Springer, Berlin, 1988, pp. 124-128. Zbl0659.60077MR960516
  25. [25] P.-A. Meyer, Éléments de probabilités quantiques. X [bis]. Approximation de l'oscillateur harmonique (d'après L. Accardi et A. Bach), in: Séminaire de Probabilités, XXIII, Springer, Berlin, 1989, pp. 175-182. Zbl0747.60105MR1022909
  26. [26] P.-A. Meyer, Éléments de probabilités quantiques. XI. Caractérisation des lois de Bernoulli quantiques d'après K.R. Parthasarathy, in: Séminaire de Probabilités, XXIII, Springer, Berlin, 1989, pp. 183-185. Zbl0739.46050MR1022910
  27. [27] S. Neshveyev, L. Tuset, The Martin boundary of a discrete quantum group, 2002. Zbl1130.46041
  28. [28] P. Ney, F. Spitzer, The Martin boundary for random walk, Trans. Amer. Math. Soc.121 (1966) 116-132. Zbl0141.15601MR195151
  29. [29] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1984. Zbl0539.60073MR758799
  30. [30] M. Schürmann, M. Skeide, Infinitesimal generators on the quantum group suq(2), Infin. Dimens. Anal. Quantum Probab. Relat. Top.1 (4) (1998) 573-598. Zbl0924.60090MR1665276
  31. [31] D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992, A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. Zbl0795.46049MR1217253
  32. [32] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys.111 (4) (1987) 613-665. Zbl0627.58034MR901157
  33. [33] S.L. Woronowicz, Tannaka–Kreĭn duality for compact matrix pseudogroups. Twisted su(N) groups, Invent. Math.93 (1) (1988) 35-76. Zbl0664.58044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.