Martin boundary theory of some quantum random walks

Benoît Collins

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 3, page 367-384
  • ISSN: 0246-0203

How to cite

top

Collins, Benoît. "Martin boundary theory of some quantum random walks." Annales de l'I.H.P. Probabilités et statistiques 40.3 (2004): 367-384. <http://eudml.org/doc/77815>.

@article{Collins2004,
author = {Collins, Benoît},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Martin boundary; quantum random walk; integral representation for positive harmonic functions; quantum probability theory},
language = {eng},
number = {3},
pages = {367-384},
publisher = {Elsevier},
title = {Martin boundary theory of some quantum random walks},
url = {http://eudml.org/doc/77815},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Collins, Benoît
TI - Martin boundary theory of some quantum random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 3
SP - 367
EP - 384
LA - eng
KW - Martin boundary; quantum random walk; integral representation for positive harmonic functions; quantum probability theory
UR - http://eudml.org/doc/77815
ER -

References

top
  1. [1] L. Accardi, A. Frigerio, J.T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci.18 (1) (1982) 97-133. Zbl0498.60099MR660823
  2. [2] S. Baaj, G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C∗-algèbres, Ann. Sci. École Norm. Sup. (4)26 (4) (1993) 425-488. Zbl0804.46078
  3. [3] P. Biane, R. Durrett, Lectures on probability theory, in: Bernard P. (Ed.), Lectures from the Twenty-third Saint-Flour Summer School held August 18–September 4, 1993 , Springer-Verlag, Berlin, 1995. Zbl0822.00009
  4. [4] Ph. Biane, Équation de Choquet–Deny sur le dual d'un groupe compact, Probab. Theory Related Fields94 (1) (1992) 39-51. Zbl0766.46044
  5. [5] P. Biane, Marches de Bernoulli quantiques, in: Séminaire de Probabilités, XXIV, 1988/89, Springer, Berlin, 1990, pp. 329-344. Zbl0701.60103MR1071548
  6. [6] P. Biane, Quantum random walk on the dual of su(n), Probab. Theory Related Fields89 (1) (1991) 117-129. Zbl0746.46058MR1109477
  7. [7] P. Biane, Some properties of quantum Bernoulli random walks, in: Quantum Probability & Related Topics, World Scientific, River Edge, NJ, 1991, pp. 193-203. Zbl0945.81505MR1149826
  8. [8] P. Biane, Minuscule weights and random walks on lattices, in: Quantum Probability & Related Topics, World Scientific, River Edge, NJ, 1992, pp. 51-65. Zbl0787.60089MR1186654
  9. [9] P. Biane, Théorème de Ney–Spitzer sur le dual de su(2), Trans. Amer. Math. Soc.345 (1) (1994) 179-194. Zbl0814.60064
  10. [10] G. Choquet, J. Deny, Sur l'équation de convolution μ=μ∗σ, C. R. Acad. Sci. Paris250 (1960) 799-801. Zbl0093.12802
  11. [11] J. Dixmier, Les C∗-algèbres et leurs représentations, Gauthier-Villars & Cie, Paris, 1964. Zbl0152.32902
  12. [12] E.G. Effros, Z.-J. Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math.5 (5) (1994) 681-723. Zbl0824.17020MR1297413
  13. [13] W. Fulton, Young tableaux, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry. Zbl0878.14034MR1464693
  14. [14] W. Fulton, J. Harris, Representation Theory, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. Zbl0744.22001MR1153249
  15. [15] F. Hiai, M. Izumi, Amenability and strong amenability for fusion algebras with applications to subfactor theory, Internat. J. Math.9 (6) (1998) 669-722. Zbl0978.46043MR1644299
  16. [16] M. Izumi, Actions of compact quantum groups on operator algebras, Sūrikaisekikenkyūsho Kōkyūroku1024 (1998) 55-60, Profound development of operator algebras (Japanese) (Kyoto, 1997). Zbl0960.58004MR1643711
  17. [17] M. Izumi, Actions of compact quantum groups on operator algebras, in: XIIth International Congress of Mathematical Physics (ICMP '97) (Brisbane) , Internat. Press, Cambridge, MA, 1999, pp. 249-253. MR1697285
  18. [18] M. Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math.169 (1) (2002) 1-57. Zbl1037.46056MR1916370
  19. [19] M. Izumi, Non-commutative Poisson boundaries and compact quantum group actions, November 29, 2000. Zbl1037.46056
  20. [20] J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains, Graduate Texts in Mathematics, vol. 40, Springer-Verlag, New York, 1976, With a chapter on Markov random fields, by D. Griffeath. Zbl0348.60090MR407981
  21. [21] P.-A. Meyer, Éléments de probabilités quantiques. I–V, in: Séminaire de Probabilités, XX, 1984/85 , Springer, Berlin, 1986, pp. 186-312. Zbl0604.60001
  22. [22] P.-A. Meyer, Éléments de probabilités quantiques. VI–VIII, in: Séminaire de Probabilités, XXI, Springer, Berlin, 1987, pp. 33-78. Zbl0633.60074
  23. [23] P.-A. Meyer, Eléments de probabilités quantiques. IX. Calculs antisymétriques et “supersymétriques” en probabilités, in: Séminaire de Probabilités, XXII, Springer, Berlin, 1988, pp. 101-123. Zbl0659.60077
  24. [24] P.-A. Meyer, Éléments de probabilités quantiques. X. Calculs avec des noyaux discrets, in: Séminaire de Probabilités, XXII, Springer, Berlin, 1988, pp. 124-128. Zbl0659.60077MR960516
  25. [25] P.-A. Meyer, Éléments de probabilités quantiques. X [bis]. Approximation de l'oscillateur harmonique (d'après L. Accardi et A. Bach), in: Séminaire de Probabilités, XXIII, Springer, Berlin, 1989, pp. 175-182. Zbl0747.60105MR1022909
  26. [26] P.-A. Meyer, Éléments de probabilités quantiques. XI. Caractérisation des lois de Bernoulli quantiques d'après K.R. Parthasarathy, in: Séminaire de Probabilités, XXIII, Springer, Berlin, 1989, pp. 183-185. Zbl0739.46050MR1022910
  27. [27] S. Neshveyev, L. Tuset, The Martin boundary of a discrete quantum group, 2002. Zbl1130.46041
  28. [28] P. Ney, F. Spitzer, The Martin boundary for random walk, Trans. Amer. Math. Soc.121 (1966) 116-132. Zbl0141.15601MR195151
  29. [29] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1984. Zbl0539.60073MR758799
  30. [30] M. Schürmann, M. Skeide, Infinitesimal generators on the quantum group suq(2), Infin. Dimens. Anal. Quantum Probab. Relat. Top.1 (4) (1998) 573-598. Zbl0924.60090MR1665276
  31. [31] D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992, A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. Zbl0795.46049MR1217253
  32. [32] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys.111 (4) (1987) 613-665. Zbl0627.58034MR901157
  33. [33] S.L. Woronowicz, Tannaka–Kreĭn duality for compact matrix pseudogroups. Twisted su(N) groups, Invent. Math.93 (1) (1988) 35-76. Zbl0664.58044

NotesEmbed ?

top

You must be logged in to post comments.