Green functions for killed random walks in the Weyl chamber of Sp(4)
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 1001-1019
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Ancona. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Grenoble) 28 (1978) 169–213. Zbl0377.31001MR513885
- [2] R. Bañuelos and R. Smits. Brownian motion in cones. Probab. Theory Related Fields 108 (1997) 299–319. Zbl0884.60037MR1465162
- [3] P. Biane. Quantum random walk on the dual of SU (n). Probab. Theory Related Fields 89 (1991) 117–129. Zbl0746.46058MR1109477
- [4] P. Biane. Minuscule weights and random walks on lattices. In Quantum Probability and Related Topics 51–65. World Sci. Publ., River Edge, NJ, 1992. Zbl0787.60089MR1186654
- [5] N. Bourbaki. Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées. Hermann, Paris, 1975. Zbl0329.17002MR453824
- [6] M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. In Algorithmic Probability and Combinatorics 1–40. Amer. Math. Soc., Providence, RI, 2010. Zbl1209.05008MR2681853
- [7] B. Collins. Martin boundary theory of some quantum random walks. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 367–384. Zbl1051.31005MR2060458
- [8] D. Denisov and V. Wachtel. Conditional limit theorems for ordered random walks. Electron. J. Probab. 15 (2010) 292–322. Zbl1201.60040MR2609589
- [9] Y. Doumerc and N. O’Connell. Exit problems associated with finite reflection groups. Probab. Theory Related Fields 132 (2005) 501–538. Zbl1087.60061MR2198200
- [10] E. Dynkin. The boundary theory of Markov processes (discrete case). Uspehi Mat. Nauk 24 (1969) 3–42. Zbl0222.60048MR245096
- [11] F. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 (1962) 1191–1198. Zbl0111.32703MR148397
- [12] P. Eichelsbacher and W. König. Ordered random walks. Electron. J. Probab. 13 (2008) 1307–1336. Zbl1189.60092MR2430709
- [13] G. Fayolle, R. Iasnogorodski and V. Malyshev. Random Walks in the Quarter-Plane. Springer, Berlin, 1999. Zbl0932.60002MR1691900
- [14] I. Ignatiouk-Robert. Martin boundary of a killed random walk on ℤ+d. Preprint, UMR CNRS 8088, Universite de Cergy-Pontoise, 2009.
- [15] I. Ignatiouk-Robert. Martin boundary of a reflected random walk on a half-space. Probab. Theory Related Fields 148 (2010) 197–245. Zbl1205.60140MR2653227
- [16] I. Ignatiouk-Robert and C. Loree. Martin boundary of a killed random walk on a quadrant. Ann. Probab. 38 (2010) 1106–1142. Zbl1205.60057MR2674995
- [17] G. Jones and D. Singerman. Complex Functions. Cambridge Univ. Press, Cambridge, 1987. Zbl0608.30001MR890746
- [18] H. Kesten. Hitting probabilities of random walks on ℤd. Stochastic Process. Appl. 25 (1987) 165–184. Zbl0626.60067MR915132
- [19] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent RV ’s and the sample DF . I. Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131. Zbl0308.60029MR375412
- [20] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58. Zbl0307.60045MR402883
- [21] W. König and P. Schmid. Random walks conditioned to stay in Weyl chambers of type C and D. Electron. Comm. Probab. 15 (2010) 286–296. Zbl1226.60067MR2670195
- [22] M. Kozdron and G. Lawler. Estimates of random walk exit probabilities and application to loop-erased random walk. Electron. J. Probab. 10 (2005) 1442–1467. Zbl1110.60046MR2191635
- [23] I. Kurkova and K. Raschel. Random walks in ℤ+2 with non-zero drift absorbed at the axes. Bull. Soc. Math. France. To appear. Zbl1243.60042
- [24] G. Lawler and V. Limic. The Beurling estimate for a class of random walks. Electron. J. Probab. 9 (2004) 846–861. Zbl1063.60066MR2110020
- [25] G. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge Univ. Press, Cambridge, 2010. Zbl1210.60002MR2677157
- [26] M. Picardello and W. Woess. Martin boundaries of cartesian products of Markov chains. Nagoya Math. J. 128 (1992) 153–169. Zbl0766.60096MR1197035
- [27] K. Raschel. Chemins confinés dans un quadrant. Thèse de doctorat de l’Université Pierre et Marie Curie, 2010.
- [28] K. Raschel. Green functions and Martin compactification for killed random walks related to SU(3). Electron. Comm. Probab. 15 (2010) 176–190. Zbl1226.60068MR2651549
- [29] K. Uchiyama. The Green functions of two dimensional random walks killed on a line and their higher dimensional analogues. Electron. J. Probab. 15 (2010) 1161–1189. Zbl1226.60069MR2659761
- [30] K. Uchiyama. Random walks on the upper half plane. Preprint, Tokyo Institute of Technology, 2010.