Critical path analysis for continuum percolation

Jiří Černý

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 6, page 661-675
  • ISSN: 0246-0203

How to cite

top

Černý, Jiří. "Critical path analysis for continuum percolation." Annales de l'I.H.P. Probabilités et statistiques 40.6 (2004): 661-675. <http://eudml.org/doc/77828>.

@article{Černý2004,
author = {Černý, Jiří},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {conductivity; continuum percolation; Highly disordered systems; homogenisation},
language = {eng},
number = {6},
pages = {661-675},
publisher = {Elsevier},
title = {Critical path analysis for continuum percolation},
url = {http://eudml.org/doc/77828},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Černý, Jiří
TI - Critical path analysis for continuum percolation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 6
SP - 661
EP - 675
LA - eng
KW - conductivity; continuum percolation; Highly disordered systems; homogenisation
UR - http://eudml.org/doc/77828
ER -

References

top
  1. [1] V. Ambegaokar, B.I. Halperin, J.S. Langer, Hopping conductivity in disordered systems, Phys. Rev. B4 (1971) 2612-2620. 
  2. [2] E. Charlaix, E. Guyon, S. Roux, Permeability of a random array of fractures of widely varying apertures, Transp. Porous Media2 (1987) 31-43. 
  3. [3] M. Cieplak, A. Maritan, J.-R. Banavar, Optimal path and domain walls in the strong disorder limit, Phys. Rev. Lett.72 (15) (1994) 2320-2323. 
  4. [4] K. Golden, S.M. Kozlov, Critical path analysis of transport in highly disordered random media, in: Berdichevsky V., Jikov V., Papanicolaou G. (Eds.), Homogenization, World Scientific, 1999, pp. 21-34. Zbl1115.82338MR1792682
  5. [5] G. Grimmett, Percolation, Springer-Verlag, 1999. Zbl0926.60004MR1707339
  6. [6] J.C. Gupta, B.V. Rao, Van den Berg–Kesten inequality for the Poisson boolean model for continuum percolation, Sankhya61 (1999) 336-346. Zbl0977.60100MR1743543
  7. [7] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994. Zbl0838.35001MR1329546
  8. [8] A.J. Katz, A.H. Thompson, Quantitative prediction of permeability in porous rock, Phys. Rev. B34 (11) (1986) 8179. 
  9. [9] T.M. Liggett, R.H. Schonmann, A.M. Stacey, Domination of product measures, Ann. Probab.25 (1997) 71-95. Zbl0882.60046MR1428500
  10. [10] R. Meester, R. Roy, Continuum Percolation, Cambridge University Press, 1996. Zbl0858.60092MR1409145
  11. [11] C.M. Newman, D.L. Stein, Ground-state structure in a highly disordered spin-glass model, J. Statist. Phys.82 (1996) 1113-1132. Zbl1042.82568MR1372437

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.