A trivariate law for certain processes related to perturbed brownian motions
Philippe Carmona; Frédérique Petit; Marc Yor
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 6, page 737-758
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] V.E. Benes, L.A. Shepp, H.S. Witsenhausen, Some solvable stochastic control problems, Stochastics4 (1) (1980) 39-83. Zbl0451.93068MR587428
- [2] J. Bertoin, W. Werner, Comportement asymptotique du nombre de tours effectués par la trajectoire brownienne plane, in: Sém. Probab. XXVIII, Lect. Notes Math, vol. 1583, Springer, Berlin, 1994, pp. 164-171. Zbl0810.60077MR1329111
- [3] J. Bertoin, W. Werner, Asymptotic windings of planar Brownian motion revisited via the Ornstein Uhlenbeck process, in: Sém. Probab. XXVIII, Lect. Notes Math, vol. 1583, Springer, Berlin, 1994, pp. 138-152. Zbl0814.60080MR1329109
- [4] Ph. Biane, M. Yor, Sur la loi des temps locaux browniens pris en un temps exponentiel, in: Sém. Probab. XXIII, Lect. Notes Math, vol. 1321, Springer, Berlin, 1988, pp. 454-466. Zbl0652.60081MR960541
- [5] Ph. Biane, M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Maths. 2ème Sér111 (1987) 23-101. Zbl0619.60072MR886959
- [6] A. Borodin, P. Salminen, Handbook of Brownian Motion: Facts and Formulae, Birkhaüser, 2002. Zbl1012.60003MR1912205
- [7] Ph. Carmona, F. Petit, M. Yor, Some extensions of the arcsine law as (partial) consequences of the scaling property of Brownian motion, Probab. Theory Related Fields100 (1994) 1-29. Zbl0808.60066MR1292188
- [8] Ph. Carmona, F. Petit, M. Yor, An identity in law involving reflecting Brownian motion, derived from generalized arc-sine laws for perturbed Brownian motions, Stochastic Process. Appl7 (1999) 323-333. Zbl0965.60074MR1671824
- [9] Ph. Carmona, F. Petit, M. Yor, Beta variables as time spent in [0,∞[ by certain perturbed Brownian motions, J. London Math. Soc. (2)58 (1999) 239-256. Zbl0924.60067
- [10] Ph. Carmona, F. Petit, J. Pitman, M. Yor, On the laws of homogeneous functionals of the Brownian bridge, in: Studia Scientiarum Mathematicarum Hungarica, vol. 35, 1999, pp. 445-455. Zbl0980.60099MR1762255
- [11] L. Chaumont, R.A. Doney, Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion, Probab. Theory Related Fields113 (nf 4) (1999) 519-534. Zbl0945.60082MR1717529
- [12] L. Chaumont, M. Yor, Some Exercices in Probability, Cambridge University Press, 2003. Zbl1065.60001MR2016344
- [13] A.S. Cherny, A.N. Shiryaev, Some properties of Brownian motion with a drift, and a generalization of a theorem of P. Lévy, Teor. Veroyatnost. i Primenen44 (2) (1999) 466-472, English translation in , Theory Probab. Appl44 (2) (2000) 412-418. Zbl0974.60058MR1751488
- [14] E. Csaki, On some distributions concerning the maximum and minimum of a Wiener process, Proc. Colloq. Methods of Complex Anal. in the Theory of Probab. and Statist, Kossuth L. Univ. Debrecen, Debrecen, 1977, Colloq. Math. Soc. János Bolyai21 (1979) 43-52. Zbl0417.60078MR561878
- [15] E. Csaki, A. Földes, On two ergodic theorems for self-similar processes, in: Asymptotic Methods in Probability and Statistics, a volume in honour of Miklós Csörgő, 1998, pp. 97-111. Zbl0934.60035MR1660754
- [16] M. Csörgő, Z. Shi, M. Yor, Some asymptotic properties of the local time of the uniform empirical process, Bernoulli5 (6) (1999) 1035-1058. Zbl0960.60023MR1735784
- [17] J.J. Daudin, M.P. Etienne, P. Vallois, Asymptotic behaviour of the local score of independent and identically distributed random sequences, Stochastic Process. Appl107 (nf 1) (2003) 1-28. Zbl1075.60516MR1995278
- [18] B. Davis, Perturbed random walks and Brownian motions, and local times, New York J. Math3A (June 9–13, 1997) 81-87, (electronic). Zbl0903.60054
- [19] R.A. Doney, Y.B. Nakhi, Perturbed and non-perturbed Brownian taboo processes, Ann. Inst. H. Poincaré37 (2001) 725-736. Zbl0989.60076MR1863275
- [20] R.A. Doney, J. Warren, M. Yor, Perturbed Bessel processes, in: Séminaire de Probabilités XXXII, Lecture Notes in Math, vol. 1686, Springer, Berlin, 1998, pp. 237-249. Zbl0924.60039MR1655297
- [21] N. Eisenbaum, Un théorème de Ray–Knight lié au supremum des temps locaux, Probab. Theory Related Fields87 (1990) 79-95. Zbl0688.60060
- [22] P. Fitzsimmons, A converse to a theorem of P. Lévy, Ann. Probab15 (1987) 1515-1523. Zbl0652.60085MR905345
- [23] H. Föllmer, C.T. Wu, M. Yor, On weak Brownian motions of arbitrary order, Ann. Institut H. Poincaré36 (4) (2000) 447-487. Zbl0968.60069MR1785391
- [24] T. Fujita, F. Petit, M. Yor, Pricing path-dependent options in some Black–Scholes market, from the distribution of homogeneous Brownian functionals, J. Appl. Probab41 (1) (2004). Zbl1049.60070
- [25] S.E. Graversen, A.N. Shiryaev, An extension of P. Lévy's distributional properties to the case of a Brownian motion with drift, Bernoulli6 (4) (2000) 615-620. Zbl0965.60077MR1777686
- [26] Y. Hu, Z. Shi, The limits of Sinaï's simple random walk in random environment, Ann. Probab26 (4) (2000) 1477-1521. Zbl0936.60088MR1675031
- [27] T. Jeulin, Application du grossissement de filtration à l'étude des temps locaux du mouvement brownien, in: Lect. Notes Math, vol. 1118, Springer, Berlin, 1985. Zbl0562.60080
- [28] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin, 1991. Zbl0734.60060MR1121940
- [29] G.N. Kinkladze, A note on the structure of processes the measure of which is absolutely continuous with respect to the Wiener process modulus, Stochastics8 (1982) 39-44. Zbl0492.60037MR687044
- [30] J.F. Le Gall, M. Yor, Excursions browniennes et carrés de processus de Bessel, C. R. Acad. Sci. Sér. I303 (1986) 73-76. Zbl0589.60070MR851079
- [31] J.F. Le Gall, M. Yor, Enlacements du mouvement brownien autour des courbes de l'espace, Trans. Amer. Math. Soc. Sér. I317 (1990) 687-722. Zbl0696.60072MR946219
- [32] N.N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1972, Translated and edited by Richard A. Silverman. Zbl0271.33001MR350075
- [33] P.A. Meyer, Intégrales stochastiques IV, in: Sém. Probab. I, Lect. Notes Math, vol. 39, Springer, Berlin, 1967, pp. 142-162. Zbl0157.25001MR231445
- [34] N. O'Connell, M. Yor, Brownian analogues of Burke's theorem, Stochastic Process. Appl96 (2) (2001) 285-304. Zbl1058.60078MR1865759
- [35] M. Perman, An excursion approach to Ray–Knight theorems for perturbed Brownian motion, Stochastic Process. Appl63 (1) (1996) 67-74. Zbl0909.60067
- [36] M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Related Fields108 (3) (1997) 357-383. Zbl0884.60082MR1465164
- [37] F. Petit, Sur le temps passé par le mouvement brownien au-dessus d'un multiple de son supremum, et quelques extensions de la loi de l'arcsinus, PhD Thesis, Université Paris VII, 1992.
- [38] F. Petit, Quelques extensions de la loi de l'arcsinus, C. R. Acad. Sci. Sér. I315 (1992) 855-858. Zbl0756.60077MR1184917
- [39] F. Petit, Document de synthèse pour l'habilitation à diriger des recherches, Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, décembre 2003.
- [40] F. Petit, M. Yor, Itô's formula and the marginals of certain submartingales, Journées sur les Mathématiques financières (1998) 164-167.
- [41] J.W. Pitman, The stochastic differential equations solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest, Ann. Probab27 (1) (1999) 261-283. Zbl0954.60060MR1681110
- [42] J.W. Pitman, M. Yor, A decomposition of Bessel Bridges, Z. Wahr. Verw. Geb59 (1982) 425-457. Zbl0484.60062MR656509
- [43] J.W. Pitman, M. Yor, Quelques identités en loi pour les processus de Bessel, in: Astérisque. Hommage à P.A. Meyer et J. Neveu, vol. 236, Société Mathématique de France, 1996, pp. 249-276. Zbl0863.60035MR1417987
- [44] J.W. Pitman, M. Yor, Path decompositions of a Brownian bridge related to the ratio of its maximum and amplitude, Studia Sci. Math. Hungar35 (3–4) (1999) 457. Zbl0973.60082
- [45] J.W. Pitman, M. Yor, Laplace transforms related to excursions of a one-dimensional diffusion, Bernoulli5 (2) (1999) 249-255. Zbl0921.60015MR1681697
- [46] B. Rauscher, Some remarks on Pitman's theorem, in: Sém. Probab. XXXI, Lect. Notes Math, vol. 1655, Springer, Berlin, 1997, pp. 266-271. Zbl0884.60076MR1478736
- [47] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [48] K. Takaoka, On the martingales obtained by an extension due to Saisho, Tanemura and Yor, of Pitman's theorem, in: Sém. Probab. XXXI, Lect. Notes Math, vol. 1655, Springer, 1997, pp. 325-365. Zbl0884.60075MR1478735
- [49] M. Yor, On square-root boundaries for Bessel processes, and pole-seeking Brownian motion, in: Truman A., Williams D. (Eds.), Stochastic Analysis and Applications, Lect. Notes Math, vol. 1095, Springer, Berlin, 1984. Zbl0598.60086MR777516
- [50] M. Yor, Some Aspects of Brownian Motion. Part I: Some Special Functionals, in: Lect. Math, Birkhaüser, ETH Zürich, 1992. Zbl0779.60070MR1193919
- [51] M. Yor, Random Brownian scaling and some absolute continuity relationships, in: Prog. Probab, vol. 36, Birkhaüser, 1995, pp. 243-252. Zbl0827.60010MR1360280
- [52] M. Yor, Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems, in: Lect. Math, Birkhaüser, ETH Zürich, 1997. Zbl0880.60082MR1442263
- [53] M. Yor, Some remarks about the joint law of Brownian motion and its supremum, in: Sém. Probab. XXXI, Lect. Notes Math, vol. 1655, Springer, Berlin, 1997, pp. 306-314. Zbl0885.60071MR1478739