A trivariate law for certain processes related to perturbed brownian motions
Philippe Carmona; Frédérique Petit; Marc Yor
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 6, page 737-758
- ISSN: 0246-0203
Access Full Article
topHow to cite
topCarmona, Philippe, Petit, Frédérique, and Yor, Marc. "A trivariate law for certain processes related to perturbed brownian motions." Annales de l'I.H.P. Probabilités et statistiques 40.6 (2004): 737-758. <http://eudml.org/doc/77831>.
@article{Carmona2004,
author = {Carmona, Philippe, Petit, Frédérique, Yor, Marc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reflecting Brownian motion; Bessel processes; Ray-Knight theorems; generalized arcsine laws},
language = {eng},
number = {6},
pages = {737-758},
publisher = {Elsevier},
title = {A trivariate law for certain processes related to perturbed brownian motions},
url = {http://eudml.org/doc/77831},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Carmona, Philippe
AU - Petit, Frédérique
AU - Yor, Marc
TI - A trivariate law for certain processes related to perturbed brownian motions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 6
SP - 737
EP - 758
LA - eng
KW - reflecting Brownian motion; Bessel processes; Ray-Knight theorems; generalized arcsine laws
UR - http://eudml.org/doc/77831
ER -
References
top- [1] V.E. Benes, L.A. Shepp, H.S. Witsenhausen, Some solvable stochastic control problems, Stochastics4 (1) (1980) 39-83. Zbl0451.93068MR587428
- [2] J. Bertoin, W. Werner, Comportement asymptotique du nombre de tours effectués par la trajectoire brownienne plane, in: Sém. Probab. XXVIII, Lect. Notes Math, vol. 1583, Springer, Berlin, 1994, pp. 164-171. Zbl0810.60077MR1329111
- [3] J. Bertoin, W. Werner, Asymptotic windings of planar Brownian motion revisited via the Ornstein Uhlenbeck process, in: Sém. Probab. XXVIII, Lect. Notes Math, vol. 1583, Springer, Berlin, 1994, pp. 138-152. Zbl0814.60080MR1329109
- [4] Ph. Biane, M. Yor, Sur la loi des temps locaux browniens pris en un temps exponentiel, in: Sém. Probab. XXIII, Lect. Notes Math, vol. 1321, Springer, Berlin, 1988, pp. 454-466. Zbl0652.60081MR960541
- [5] Ph. Biane, M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Maths. 2ème Sér111 (1987) 23-101. Zbl0619.60072MR886959
- [6] A. Borodin, P. Salminen, Handbook of Brownian Motion: Facts and Formulae, Birkhaüser, 2002. Zbl1012.60003MR1912205
- [7] Ph. Carmona, F. Petit, M. Yor, Some extensions of the arcsine law as (partial) consequences of the scaling property of Brownian motion, Probab. Theory Related Fields100 (1994) 1-29. Zbl0808.60066MR1292188
- [8] Ph. Carmona, F. Petit, M. Yor, An identity in law involving reflecting Brownian motion, derived from generalized arc-sine laws for perturbed Brownian motions, Stochastic Process. Appl7 (1999) 323-333. Zbl0965.60074MR1671824
- [9] Ph. Carmona, F. Petit, M. Yor, Beta variables as time spent in [0,∞[ by certain perturbed Brownian motions, J. London Math. Soc. (2)58 (1999) 239-256. Zbl0924.60067
- [10] Ph. Carmona, F. Petit, J. Pitman, M. Yor, On the laws of homogeneous functionals of the Brownian bridge, in: Studia Scientiarum Mathematicarum Hungarica, vol. 35, 1999, pp. 445-455. Zbl0980.60099MR1762255
- [11] L. Chaumont, R.A. Doney, Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion, Probab. Theory Related Fields113 (nf 4) (1999) 519-534. Zbl0945.60082MR1717529
- [12] L. Chaumont, M. Yor, Some Exercices in Probability, Cambridge University Press, 2003. Zbl1065.60001MR2016344
- [13] A.S. Cherny, A.N. Shiryaev, Some properties of Brownian motion with a drift, and a generalization of a theorem of P. Lévy, Teor. Veroyatnost. i Primenen44 (2) (1999) 466-472, English translation in , Theory Probab. Appl44 (2) (2000) 412-418. Zbl0974.60058MR1751488
- [14] E. Csaki, On some distributions concerning the maximum and minimum of a Wiener process, Proc. Colloq. Methods of Complex Anal. in the Theory of Probab. and Statist, Kossuth L. Univ. Debrecen, Debrecen, 1977, Colloq. Math. Soc. János Bolyai21 (1979) 43-52. Zbl0417.60078MR561878
- [15] E. Csaki, A. Földes, On two ergodic theorems for self-similar processes, in: Asymptotic Methods in Probability and Statistics, a volume in honour of Miklós Csörgő, 1998, pp. 97-111. Zbl0934.60035MR1660754
- [16] M. Csörgő, Z. Shi, M. Yor, Some asymptotic properties of the local time of the uniform empirical process, Bernoulli5 (6) (1999) 1035-1058. Zbl0960.60023MR1735784
- [17] J.J. Daudin, M.P. Etienne, P. Vallois, Asymptotic behaviour of the local score of independent and identically distributed random sequences, Stochastic Process. Appl107 (nf 1) (2003) 1-28. Zbl1075.60516MR1995278
- [18] B. Davis, Perturbed random walks and Brownian motions, and local times, New York J. Math3A (June 9–13, 1997) 81-87, (electronic). Zbl0903.60054
- [19] R.A. Doney, Y.B. Nakhi, Perturbed and non-perturbed Brownian taboo processes, Ann. Inst. H. Poincaré37 (2001) 725-736. Zbl0989.60076MR1863275
- [20] R.A. Doney, J. Warren, M. Yor, Perturbed Bessel processes, in: Séminaire de Probabilités XXXII, Lecture Notes in Math, vol. 1686, Springer, Berlin, 1998, pp. 237-249. Zbl0924.60039MR1655297
- [21] N. Eisenbaum, Un théorème de Ray–Knight lié au supremum des temps locaux, Probab. Theory Related Fields87 (1990) 79-95. Zbl0688.60060
- [22] P. Fitzsimmons, A converse to a theorem of P. Lévy, Ann. Probab15 (1987) 1515-1523. Zbl0652.60085MR905345
- [23] H. Föllmer, C.T. Wu, M. Yor, On weak Brownian motions of arbitrary order, Ann. Institut H. Poincaré36 (4) (2000) 447-487. Zbl0968.60069MR1785391
- [24] T. Fujita, F. Petit, M. Yor, Pricing path-dependent options in some Black–Scholes market, from the distribution of homogeneous Brownian functionals, J. Appl. Probab41 (1) (2004). Zbl1049.60070
- [25] S.E. Graversen, A.N. Shiryaev, An extension of P. Lévy's distributional properties to the case of a Brownian motion with drift, Bernoulli6 (4) (2000) 615-620. Zbl0965.60077MR1777686
- [26] Y. Hu, Z. Shi, The limits of Sinaï's simple random walk in random environment, Ann. Probab26 (4) (2000) 1477-1521. Zbl0936.60088MR1675031
- [27] T. Jeulin, Application du grossissement de filtration à l'étude des temps locaux du mouvement brownien, in: Lect. Notes Math, vol. 1118, Springer, Berlin, 1985. Zbl0562.60080
- [28] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin, 1991. Zbl0734.60060MR1121940
- [29] G.N. Kinkladze, A note on the structure of processes the measure of which is absolutely continuous with respect to the Wiener process modulus, Stochastics8 (1982) 39-44. Zbl0492.60037MR687044
- [30] J.F. Le Gall, M. Yor, Excursions browniennes et carrés de processus de Bessel, C. R. Acad. Sci. Sér. I303 (1986) 73-76. Zbl0589.60070MR851079
- [31] J.F. Le Gall, M. Yor, Enlacements du mouvement brownien autour des courbes de l'espace, Trans. Amer. Math. Soc. Sér. I317 (1990) 687-722. Zbl0696.60072MR946219
- [32] N.N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1972, Translated and edited by Richard A. Silverman. Zbl0271.33001MR350075
- [33] P.A. Meyer, Intégrales stochastiques IV, in: Sém. Probab. I, Lect. Notes Math, vol. 39, Springer, Berlin, 1967, pp. 142-162. Zbl0157.25001MR231445
- [34] N. O'Connell, M. Yor, Brownian analogues of Burke's theorem, Stochastic Process. Appl96 (2) (2001) 285-304. Zbl1058.60078MR1865759
- [35] M. Perman, An excursion approach to Ray–Knight theorems for perturbed Brownian motion, Stochastic Process. Appl63 (1) (1996) 67-74. Zbl0909.60067
- [36] M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Related Fields108 (3) (1997) 357-383. Zbl0884.60082MR1465164
- [37] F. Petit, Sur le temps passé par le mouvement brownien au-dessus d'un multiple de son supremum, et quelques extensions de la loi de l'arcsinus, PhD Thesis, Université Paris VII, 1992.
- [38] F. Petit, Quelques extensions de la loi de l'arcsinus, C. R. Acad. Sci. Sér. I315 (1992) 855-858. Zbl0756.60077MR1184917
- [39] F. Petit, Document de synthèse pour l'habilitation à diriger des recherches, Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, décembre 2003.
- [40] F. Petit, M. Yor, Itô's formula and the marginals of certain submartingales, Journées sur les Mathématiques financières (1998) 164-167.
- [41] J.W. Pitman, The stochastic differential equations solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest, Ann. Probab27 (1) (1999) 261-283. Zbl0954.60060MR1681110
- [42] J.W. Pitman, M. Yor, A decomposition of Bessel Bridges, Z. Wahr. Verw. Geb59 (1982) 425-457. Zbl0484.60062MR656509
- [43] J.W. Pitman, M. Yor, Quelques identités en loi pour les processus de Bessel, in: Astérisque. Hommage à P.A. Meyer et J. Neveu, vol. 236, Société Mathématique de France, 1996, pp. 249-276. Zbl0863.60035MR1417987
- [44] J.W. Pitman, M. Yor, Path decompositions of a Brownian bridge related to the ratio of its maximum and amplitude, Studia Sci. Math. Hungar35 (3–4) (1999) 457. Zbl0973.60082
- [45] J.W. Pitman, M. Yor, Laplace transforms related to excursions of a one-dimensional diffusion, Bernoulli5 (2) (1999) 249-255. Zbl0921.60015MR1681697
- [46] B. Rauscher, Some remarks on Pitman's theorem, in: Sém. Probab. XXXI, Lect. Notes Math, vol. 1655, Springer, Berlin, 1997, pp. 266-271. Zbl0884.60076MR1478736
- [47] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [48] K. Takaoka, On the martingales obtained by an extension due to Saisho, Tanemura and Yor, of Pitman's theorem, in: Sém. Probab. XXXI, Lect. Notes Math, vol. 1655, Springer, 1997, pp. 325-365. Zbl0884.60075MR1478735
- [49] M. Yor, On square-root boundaries for Bessel processes, and pole-seeking Brownian motion, in: Truman A., Williams D. (Eds.), Stochastic Analysis and Applications, Lect. Notes Math, vol. 1095, Springer, Berlin, 1984. Zbl0598.60086MR777516
- [50] M. Yor, Some Aspects of Brownian Motion. Part I: Some Special Functionals, in: Lect. Math, Birkhaüser, ETH Zürich, 1992. Zbl0779.60070MR1193919
- [51] M. Yor, Random Brownian scaling and some absolute continuity relationships, in: Prog. Probab, vol. 36, Birkhaüser, 1995, pp. 243-252. Zbl0827.60010MR1360280
- [52] M. Yor, Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems, in: Lect. Math, Birkhaüser, ETH Zürich, 1997. Zbl0880.60082MR1442263
- [53] M. Yor, Some remarks about the joint law of Brownian motion and its supremum, in: Sém. Probab. XXXI, Lect. Notes Math, vol. 1655, Springer, Berlin, 1997, pp. 306-314. Zbl0885.60071MR1478739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.