Perturbed and non-perturbed brownian taboo processes

R. A. Doney; Y. B. Nakhi

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 6, page 725-736
  • ISSN: 0246-0203

How to cite

top

Doney, R. A., and Nakhi, Y. B.. "Perturbed and non-perturbed brownian taboo processes." Annales de l'I.H.P. Probabilités et statistiques 37.6 (2001): 725-736. <http://eudml.org/doc/77704>.

@article{Doney2001,
author = {Doney, R. A., Nakhi, Y. B.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {-perturbed Brownian taboo process; asymptotic behaviour; supremum of the taboo process},
language = {eng},
number = {6},
pages = {725-736},
publisher = {Elsevier},
title = {Perturbed and non-perturbed brownian taboo processes},
url = {http://eudml.org/doc/77704},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Doney, R. A.
AU - Nakhi, Y. B.
TI - Perturbed and non-perturbed brownian taboo processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 6
SP - 725
EP - 736
LA - eng
KW - -perturbed Brownian taboo process; asymptotic behaviour; supremum of the taboo process
UR - http://eudml.org/doc/77704
ER -

References

top
  1. [1] E. Csáki, On the lower limits of maxima and minima of Wiener processes and partial sums, Z. Wahrsch. Verw. Gebiete43 (1978) 205-221. Zbl0372.60113MR494527
  2. [2] R.A. Doney, Some calculations for perturbed Brownian motion, in: Sém. Probab. XXXII, Lecture Notes Math., 1686, 1998, pp. 231-236. Zbl0911.60067MR1655296
  3. [3] F.B. Knight, Brownian local times and taboo processes, Trans. Amer. Math. Soc.143 (1969) 173-185. Zbl0187.41203MR253424
  4. [4] A. Lambert, Completely asymmetric Lévy processes confined in a finite interval, Ann. Inst. H. Poincaré36 (2001) 251-274. Zbl0970.60055MR1751660
  5. [5] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin, 1966. Zbl0143.08502MR232968
  6. [6] Y. Nakhi, A study of some perturbed processes related to Brownian motion, Ph. D. Thesis, University of Manchester, 2000. 
  7. [7] M. Yor, Some Aspects of Brownian Motion. Part 1. Some Special Functionals, Birkhäuser, Basel, 1992. Zbl0779.60070MR1193919

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.