Perturbed Skorohod equations and perturbed reflected diffusion processes

R. A. Doney; T. Zhang

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 1, page 107-121
  • ISSN: 0246-0203

How to cite

top

Doney, R. A., and Zhang, T.. "Perturbed Skorohod equations and perturbed reflected diffusion processes." Annales de l'I.H.P. Probabilités et statistiques 41.1 (2005): 107-121. <http://eudml.org/doc/77834>.

@article{Doney2005,
author = {Doney, R. A., Zhang, T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Perturbed Skorokhod equations; Local time; Reflection principle; Weak convergence; Reflected diffusions; Stratonovich integration},
language = {eng},
number = {1},
pages = {107-121},
publisher = {Elsevier},
title = {Perturbed Skorohod equations and perturbed reflected diffusion processes},
url = {http://eudml.org/doc/77834},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Doney, R. A.
AU - Zhang, T.
TI - Perturbed Skorohod equations and perturbed reflected diffusion processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 1
SP - 107
EP - 121
LA - eng
KW - Perturbed Skorokhod equations; Local time; Reflection principle; Weak convergence; Reflected diffusions; Stratonovich integration
UR - http://eudml.org/doc/77834
ER -

References

top
  1. [1] Ph. Carmona, F. Petit, M. Yor, Some extentions of the arcsine law as (partial) consequences of the scaling property of Brownian motion, Probab. Theory Related Fields100 (1994) 1-29. Zbl0808.60066MR1292188
  2. [2] Ph. Carmona, F. Petit, M. Yor, Beta variables as times spent in [ 0 , ) by certain perturbed Brownian motions, J. London Math. Soc.58 (1998) 239-256. Zbl0924.60067
  3. [3] L. Chaumont, R.A. Doney, Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion, Probab. Theory Related Fields113 (1999) 519-534. Zbl0945.60082MR1717529
  4. [4] L. Chaumont, R.A. Doney, Some calculations for doubly perturbed Brownian motion, Stochastic Process. Appl.85 (1) (2000) 61-74. Zbl0997.60095MR1730618
  5. [5] B. Davis, Weak limits of perturbed random walks and the equation Y t = B t + α sup s t Y s + β inf s t Y s , Ann. Probab.24 (1996) 2007-2023. Zbl0870.60076
  6. [6] B. Davis, Brownian motion and random walk perturbed at extrema, Probab. Theory Related Fields113 (1999) 501-518. Zbl0930.60041MR1717528
  7. [7] R.A. Doney, Some calculations for perturbed Brownian motion, in: Seminaire de Probabilites XXXII, Lecture Notes in Mathematics, 1998, pp. 231-236. Zbl0911.60067MR1655296
  8. [8] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1989. Zbl0684.60040MR1011252
  9. [9] J.F. Le Gall, M. Yor, Excursions browniennes et carrés de processus de Bessel, C. R. Acad. Sci. Paris Sér. I303 (1986) 73-76. Zbl0589.60070MR851079
  10. [10] J.F. Le Gall, M. Yor, Enlacements du mouvement brownien autour des courbes de l'espace, Trans. Amer. Math. Soc.317 (1990) 687-7722. Zbl0696.60072MR946219
  11. [11] P.L. Lions, A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math.37 (1984) 511-537. Zbl0598.60060MR745330
  12. [12] M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Related Fields108 (1997) 357-383. Zbl0884.60082MR1465164
  13. [13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1994. Zbl0804.60001MR1303781
  14. [14] W. Werner, Some remarks on perturbed Brownian motion, in: Seminaire de Probabilites XXIX, Lecture Notes in Mathematics, vol. 1613, 1995, pp. 37-43. Zbl0835.60072MR1459447
  15. [15] T.S. Zhang, On the strong solutions of one-dimensional stochastic differential equations with reflecting boundary, Stochastic Process. Appl.50 (1994) 135-147. Zbl0796.60062MR1262335

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.