Stochastic integration with respect to Volterra processes

L. Decreusefond

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 2, page 123-149
  • ISSN: 0246-0203

How to cite

top

Decreusefond, L.. "Stochastic integration with respect to Volterra processes." Annales de l'I.H.P. Probabilités et statistiques 41.2 (2005): 123-149. <http://eudml.org/doc/77839>.

@article{Decreusefond2005,
author = {Decreusefond, L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fractional calculus; stochastic calculus; fractional Brownian motion},
language = {eng},
number = {2},
pages = {123-149},
publisher = {Elsevier},
title = {Stochastic integration with respect to Volterra processes},
url = {http://eudml.org/doc/77839},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Decreusefond, L.
TI - Stochastic integration with respect to Volterra processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 2
SP - 123
EP - 149
LA - eng
KW - fractional calculus; stochastic calculus; fractional Brownian motion
UR - http://eudml.org/doc/77839
ER -

References

top
  1. [1] R. Adams, Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] E. Alòs, J.O. León, D. Nualart, Stochastic Stratonovitch calculus for fractional Brownian motion with Hurst parameter less than 1 / 2 , Taiwanese J. Math.5 (3) (2001) 609-632. Zbl0989.60054MR1849782
  3. [3] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab.29 (2) (2001) 766-801. Zbl1015.60047MR1849177
  4. [4] A. Benassi, P. Bertrand, S. Cohen, J. Istas, Identification d'un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle, C. R. Acad. Sci. Paris Sér. I Math.329 (5) (1999) 435-440. Zbl0947.62054MR1710087
  5. [5] P. Carmona, L. Coutin, G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist.39 (1) (2003) 27-68. Zbl1016.60043MR1959841
  6. [6] L. Coutin, Z. Qian, Stochastic differential equations for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math.331 (1) (2000) 75-80. Zbl0981.60040MR1780221
  7. [7] W. Dai, C.C. Heyde, Itô's formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal.9 (4) (1996) 439-448. Zbl0867.60029MR1429266
  8. [8] L. Decreusefond, Stochastic calculus for Volterra processes, C. R. Acad. Sci. Paris Sér. I Math.334 (10) (2002) 903-908. Zbl1074.60066
  9. [9] L. Decreusefond, A. Üstünel, Application du calcul des variations stochastiques au mouvement brownien fractionnaire, C. R. Acad. Sci. Paris Sér. I Math.321 (12) (1995) 1605-1608. Zbl0846.60057MR1367815
  10. [10] L. Decreusefond, A. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal.10 (2) (1999) 177-214. Zbl0924.60034MR1677455
  11. [11] Doukhan P., Oppenheim G., Taqqu M. (Eds.), Long Range Dependence: Theory and Applications, Birkhäuser, 2002, pp. 203-226, Chapter 10. 
  12. [12] M. Errami, F. Russo, Covariation de convolution de martingales, C. R. Acad. Sci. Paris Sér. I Math.326 (5) (1998) 601-606. Zbl0917.60054MR1649341
  13. [13] M. Errami, F. Russo, n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl.104 (2) (2003) 259-299. Zbl1075.60531MR1961622
  14. [14] D. Feyel, A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier41 (1) (1991) 49-76. Zbl0735.46018MR1112191
  15. [15] D. Feyel, A. de La Pradelle, On fractional Brownian processes, Potential Anal.10 (3) (1999) 273-288. Zbl0944.60045MR1696137
  16. [16] D. Feyel, A. de la Pradelle, The FBM Ito's formula through analytic continuation, Electron. J. Probab.6 (26) (2001) 22, (electronic). Zbl1008.60074MR1873303
  17. [17] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H 1 / 4 , Ann. Probab.31 (4) (2003) 1772-1820. Zbl1059.60067
  18. [18] T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana14 (2) (1998) 215-310. Zbl0923.34056MR1654527
  19. [19] A. Nikiforov, V. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, 1988. Zbl0624.33001MR922041
  20. [20] D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 1995. Zbl0837.60050MR1344217
  21. [21] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, 1993. Zbl0818.26003MR1347689
  22. [22] J. Tambaca, Estimates of the Sobolev norm of a product of two functions, J. Math. Anal. Appl.255 (1) (2001) 137-146. Zbl0979.46020MR1813814
  23. [23] A.S. Üstünel, The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus, Probab. Theory Related Fields79 (1988) 249-269. Zbl0635.60059MR958290
  24. [24] A.S. Üstünel, An Introduction to Analysis on Wiener Space, Lectures Notes in Mathematics, vol. 1610, Springer-Verlag, 1995. Zbl0837.60051MR1439752
  25. [25] A.S. Üstünel, M. Zakai, Transformations of Measure on Wiener Spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Zbl0974.46044MR1736980
  26. [26] M. Zähle, Integration with respect to fractal functions and stochastic calculus, I, Probab. Theory Related Fields111 (3) (1998) 333-374. Zbl0918.60037MR1640795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.