Enhanced Gaussian processes and applications

Laure Coutin; Nicolas Victoir

ESAIM: Probability and Statistics (2009)

  • Volume: 13, page 247-260
  • ISSN: 1292-8100

Abstract

top
We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem.

How to cite

top

Coutin, Laure, and Victoir, Nicolas. "Enhanced Gaussian processes and applications." ESAIM: Probability and Statistics 13 (2009): 247-260. <http://eudml.org/doc/250632>.

@article{Coutin2009,
abstract = { We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem. },
author = {Coutin, Laure, Victoir, Nicolas},
journal = {ESAIM: Probability and Statistics},
keywords = {Gaussian processes; Volterra processes; rough path theory},
language = {eng},
month = {7},
pages = {247-260},
publisher = {EDP Sciences},
title = {Enhanced Gaussian processes and applications},
url = {http://eudml.org/doc/250632},
volume = {13},
year = {2009},
}

TY - JOUR
AU - Coutin, Laure
AU - Victoir, Nicolas
TI - Enhanced Gaussian processes and applications
JO - ESAIM: Probability and Statistics
DA - 2009/7//
PB - EDP Sciences
VL - 13
SP - 247
EP - 260
AB - We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem.
LA - eng
KW - Gaussian processes; Volterra processes; rough path theory
UR - http://eudml.org/doc/250632
ER -

References

top
  1. Ph. Biane and M. Yor, Variation sur une formule de Paul Lévy. Ann. Inst. H. Poincaré23 (1987) 359–377.  Zbl0623.60099
  2. C. Borell, On polynomial chaos and integrability. Probab. Math. Statist.3 (1984) 191–203.  
  3. P. Cheridito and Nualart, D. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ( 0 , 1 2 ) . Ann. Inst. H. Poincaré Probab. Statist.41 (2005) 1049–1081.  Zbl1083.60027
  4. L. Coutin, An introduction to (stochastic) calculus with respect to fractional Brownian motion, Séminaire de Probabilités XL, Lect. Notes Math.1899 (2007) 3–65. Springer, Berlin.  Zbl1126.60042
  5. L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields122 (2002) 108–140.  Zbl1047.60029
  6. L. Coutin, P. Friz and N. Victoir, Good rough path sequences and applications to anticipating calculus. Ann. Probab.35 (2007) 1172–1193.  Zbl1132.60053
  7. L. Decreusefond, Stochastic Integration with respect to Volterra processes. Ann. Inst. H. Poincaré41 (2005) 123–149.  Zbl1071.60040
  8. L. Decreusefond and A.S. Üstünel, Stochastic Analysis of the Fractional Brownian Motion. Potential Anal.10 (1997) 177–214.  
  9. X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'été de probabilités de Saint-Flour, 1974. Lect. Notes Math.480 (1974) 1–96.  
  10. P. Friz and N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré41 (2005) 703–724.  Zbl1080.60021
  11. A. Lejay, Introduction to Rough Paths, Séminaire de probabilités XXXVII. Lect. Notes Math.1832 (2003) 1–59.  Zbl1041.60051
  12. P. Levy, Wiener's random function and other Laplacian random function, Proc. 2 Berkeley Symp. Math. Proba. (1950) 171–186, Univ. of California.  
  13. T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana14 (1998) 215–310.  Zbl0923.34056
  14. T. Lyons and Z. Qian, System Control and Rough Paths, Oxford University Press (2002).  Zbl1029.93001
  15. A. Millet and M. Sanz-Sole, Approximation of rough path of fractional Brownian motion, Seminar on Stochastic Analysis, Random Fields and Application V, Ascona 2005, Progr. Probab.59. Birkhäuser Verlag (to appear) and arXiv math. PR/0509353.  
  16. V. Pipiras and M.S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on interval complete? Bernoulli7 (2001) 873–897.  Zbl1003.60055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.