Enhanced Gaussian processes and applications
ESAIM: Probability and Statistics (2009)
- Volume: 13, page 247-260
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topCoutin, Laure, and Victoir, Nicolas. "Enhanced Gaussian processes and applications." ESAIM: Probability and Statistics 13 (2009): 247-260. <http://eudml.org/doc/250632>.
@article{Coutin2009,
abstract = {
We propose some construction of enhanced Gaussian processes using
Karhunen-Loeve expansion. We obtain a characterization and some
criterion of existence and uniqueness. Using rough-path theory, we
derive some Wong-Zakai Theorem.
},
author = {Coutin, Laure, Victoir, Nicolas},
journal = {ESAIM: Probability and Statistics},
keywords = {Gaussian processes; Volterra processes; rough path theory},
language = {eng},
month = {7},
pages = {247-260},
publisher = {EDP Sciences},
title = {Enhanced Gaussian processes and applications},
url = {http://eudml.org/doc/250632},
volume = {13},
year = {2009},
}
TY - JOUR
AU - Coutin, Laure
AU - Victoir, Nicolas
TI - Enhanced Gaussian processes and applications
JO - ESAIM: Probability and Statistics
DA - 2009/7//
PB - EDP Sciences
VL - 13
SP - 247
EP - 260
AB -
We propose some construction of enhanced Gaussian processes using
Karhunen-Loeve expansion. We obtain a characterization and some
criterion of existence and uniqueness. Using rough-path theory, we
derive some Wong-Zakai Theorem.
LA - eng
KW - Gaussian processes; Volterra processes; rough path theory
UR - http://eudml.org/doc/250632
ER -
References
top- Ph. Biane and M. Yor, Variation sur une formule de Paul Lévy. Ann. Inst. H. Poincaré23 (1987) 359–377.
- C. Borell, On polynomial chaos and integrability. Probab. Math. Statist.3 (1984) 191–203.
- P. Cheridito and Nualart, D. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter Ann. Inst. H. Poincaré Probab. Statist.41 (2005) 1049–1081.
- L. Coutin, An introduction to (stochastic) calculus with respect to fractional Brownian motion, Séminaire de Probabilités XL, Lect. Notes Math.1899 (2007) 3–65. Springer, Berlin.
- L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields122 (2002) 108–140.
- L. Coutin, P. Friz and N. Victoir, Good rough path sequences and applications to anticipating calculus. Ann. Probab.35 (2007) 1172–1193.
- L. Decreusefond, Stochastic Integration with respect to Volterra processes. Ann. Inst. H. Poincaré41 (2005) 123–149.
- L. Decreusefond and A.S. Üstünel, Stochastic Analysis of the Fractional Brownian Motion. Potential Anal.10 (1997) 177–214.
- X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'été de probabilités de Saint-Flour, 1974. Lect. Notes Math.480 (1974) 1–96.
- P. Friz and N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré41 (2005) 703–724.
- A. Lejay, Introduction to Rough Paths, Séminaire de probabilités XXXVII. Lect. Notes Math.1832 (2003) 1–59.
- P. Levy, Wiener's random function and other Laplacian random function, Proc. 2 Berkeley Symp. Math. Proba. (1950) 171–186, Univ. of California.
- T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana14 (1998) 215–310.
- T. Lyons and Z. Qian, System Control and Rough Paths, Oxford University Press (2002).
- A. Millet and M. Sanz-Sole, Approximation of rough path of fractional Brownian motion, Seminar on Stochastic Analysis, Random Fields and Application V, Ascona 2005, Progr. Probab.59. Birkhäuser Verlag (to appear) and arXiv math. PR/0509353.
- V. Pipiras and M.S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on interval complete? Bernoulli7 (2001) 873–897.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.