Decoherence of quantum Markov semigroups

Rolando Rebolledo

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 349-373
  • ISSN: 0246-0203

How to cite

top

Rebolledo, Rolando. "Decoherence of quantum Markov semigroups." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 349-373. <http://eudml.org/doc/77849>.

@article{Rebolledo2005,
author = {Rebolledo, Rolando},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {quantum Markov semigroup; decoherence; limit behaviour; invariant subalgebras},
language = {eng},
number = {3},
pages = {349-373},
publisher = {Elsevier},
title = {Decoherence of quantum Markov semigroups},
url = {http://eudml.org/doc/77849},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Rebolledo, Rolando
TI - Decoherence of quantum Markov semigroups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 349
EP - 373
LA - eng
KW - quantum Markov semigroup; decoherence; limit behaviour; invariant subalgebras
UR - http://eudml.org/doc/77849
ER -

References

top
  1. [1] L. Accardi, Y.G. Lu, I. Volovich, Quantum Theory and its Stochastic Limit, Springer-Verlag, 2002. Zbl1140.81307MR1925437
  2. [2] R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Phys., vol. 286, Springer-Verlag, 1987. Zbl0652.46055MR911678
  3. [3] Ph. Biane, Quelques propriétés du mouvement Brownien non-commutatif. Hommage à P.A. Meyer et J. Neveu, Astérisque236 (1996) 73-102. Zbl0867.46043MR1417975
  4. [4] Ph. Blanchard, R. Olkiewicz, Decoherence induced transition from quantum to classical dynamics, Rev. Math. Phys.15 (2003) 217-243. Zbl1074.81042MR1981622
  5. [5] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 1, Springer-Verlag, 1987. Zbl0905.46046MR545651
  6. [6] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 2, Springer-Verlag, 1996. Zbl0463.46052
  7. [7] M. Brune et al., Phys. Rev. Lett.77 (1996) 4887. 
  8. [8] A.M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal.153 (1998) 382-404. Zbl0914.47040MR1614586
  9. [9] A.M. Chebotarev, Lectures on Quantum Probability, Aportaciones Matemáticas, Ser. Textos, vol. 14, Soc. Mat. Mexicana, México, 2000. Zbl1010.60093MR1925129
  10. [10] E. Christensen, D.E. Evans, Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc.20 (1979) 358-368. Zbl0448.46040MR551466
  11. [11] E.B. Davies, Quantum dynamical semigroups and the neutron diffusion equation, Rep. Math. Phys.11 (1977) 169-188. Zbl0372.47020MR503331
  12. [12] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel. Chapitres XII–XVI, Hermann, Paris, 1987. Zbl0624.60084MR898005
  13. [13] G. Dell Antonio, On Decoherence, J. Math. Phys.44 (2003) 4939-4956. Zbl1062.81163MR2014837
  14. [14] F. Fagnola, Quantum Markov semigroups and quantum flows, Proyecciones J. Math.18 (3) (1999) 1-144. Zbl1255.81185MR1814506
  15. [15] F. Fagnola, R. Rebolledo, The approach to equilibrium of a class of quantum dynamical semigroups, Infinite Dimensional Anal. Quantum Probab. Related Topics1 (4) (1998) 1-12. Zbl0923.46073MR1665275
  16. [16] F. Fagnola, R. Rebolledo, On the existence of invariant states for quantum dynamical semigroups, J. Math. Phys.42 (2001) 1296-1308. Zbl1013.81031MR1814690
  17. [17] F. Fagnola, R. Rebolledo, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys.43 (2002) 1074-1082. Zbl1059.47049MR1878987
  18. [18] F. Fagnola, R. Rebolledo, Transience and recurrence of quantum Markov semigroups, Probab. Theory Related Fields126 (2003) 289-306. Zbl1024.60031MR1990058
  19. [19] A. Frigerio, M. Verri, Long-time asymptotic properties of dynamical semigroups on w * -algebras, Math. Z. (1982). Zbl0471.46048
  20. [20] D. Giulini et al., Decoherence and the Appearance of a Classical world in Quantum Theory, Springer, Heidelberg, 1996. Zbl0855.00003
  21. [21] V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of n-level systems, J. Math. Phys.17 (1976) 821-825. MR406206
  22. [22] A. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Phys., vol. 67, Springer-Verlag, 2001. Zbl0999.81001MR1889193
  23. [23] T.M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985. Zbl0559.60078MR776231
  24. [24] T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer-Verlag, Berlin, 1999. Zbl0949.60006MR1717346
  25. [25] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys.48 (1976) 119-130. Zbl0343.47031MR413878
  26. [26] A. Majewski, R.F. Streater, Detailed balance and quantum dynamical maps, J. Phys. A31 (1998) 7981-7995. Zbl0929.46060MR1647879
  27. [27] P.-A. Meyer, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer-Verlag, Berlin, 1993. Zbl0773.60098MR1222649
  28. [28] C.J. Myatt et al., Nature403 (2000) 269. 
  29. [29] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983. Zbl0516.47023MR710486
  30. [30] K.R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Monographs in Math., vol. 85, Birkhaüser, Basel, 1992. Zbl0751.60046MR1164866
  31. [31] W.F. Stinespring, Positive functions on C * -algebras, Proc. Amer. Math. Soc.6 (1955) 211-216. Zbl0064.36703
  32. [32] G.K. Pedersen, Analysis Now, Graduate Texts in Math., vol. 118, Springer-Verlag, 1989. Zbl0668.46002MR971256
  33. [33] W.T. Strunz, Decoherence in quantum physics, in: Buchleitner A., Hornberger K. (Eds.), Coherent Evolution in Noisy Environments, Lecture Notes in Phys., vol. 611, Springer-Verlag, 2002, pp. 199-233. MR2012179

NotesEmbed ?

top

You must be logged in to post comments.