From -level atom chains to n-dimensional noises

Stéphane Attal; Yan Pautrat

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 391-407
  • ISSN: 0246-0203

How to cite

top

Attal, Stéphane, and Pautrat, Yan. "From $(n+1)$-level atom chains to n-dimensional noises." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 391-407. <http://eudml.org/doc/77851>.

@article{Attal2005,
author = {Attal, Stéphane, Pautrat, Yan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {391-407},
publisher = {Elsevier},
title = {From $(n+1)$-level atom chains to n-dimensional noises},
url = {http://eudml.org/doc/77851},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Attal, Stéphane
AU - Pautrat, Yan
TI - From $(n+1)$-level atom chains to n-dimensional noises
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 391
EP - 407
LA - eng
UR - http://eudml.org/doc/77851
ER -

References

top
  1. [1] S. Attal, Approximating the Fock space with the toy Fock space, in: Séminaire de Probabilités XXXVI, Lecture Notes in Math., vol. 1801, Springer-Verlag, Berlin, 2003, pp. 477-491. Zbl1053.46041MR1971605
  2. [2] S. Attal, Semimartingales non commutatives et applications aux endomorphismes browniens, Thesis of Strasbourg University, 1994. MR1309245
  3. [3] S. Attal, Classical and quantum stochastic calculus, in: Quantum Probability and Related Topics X, World Scientific, 1998, pp. 1-52. MR1689473
  4. [4] S. Attal, M. Emery, Equations de structure pour des martingales vectorielles, in: Séminaire de Probabilités XXVIII, Springer-Verlag, 1994, pp. 256-278. Zbl0814.60040MR1329117
  5. [5] S. Attal, Y. Pautrat, From repeated to continuous quantum interactions, Ann. I. H. Poincaré – PR, submitted for publication. Zbl1099.81040
  6. [6] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math., vol. 261, Springer-Verlag, Berlin, 1972. Zbl0265.43008MR493402
  7. [7] Y. Pautrat, Des matrices de Pauli aux bruits quantiques, Thesis of Grenoble University, 2003. 
  8. [8] G. Taviot, Martingales et équations de structure : étude géométrique, Thesis of Strasbourg University, 1999. Zbl0953.60022MR1736397

NotesEmbed ?

top

You must be logged in to post comments.