The approximate Euler method for Lévy driven stochastic differential equations

Jean Jacod; Thomas G. Kurtz; Sylvie Méléard; Philip Protter

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 523-558
  • ISSN: 0246-0203

How to cite

top

Jacod, Jean, et al. "The approximate Euler method for Lévy driven stochastic differential equations." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 523-558. <http://eudml.org/doc/77857>.

@article{Jacod2005,
author = {Jacod, Jean, Kurtz, Thomas G., Méléard, Sylvie, Protter, Philip},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy processes; approximation schemes; weak convergence; stability; Euler-Maruyama method; error expansion; Monte Carlo approximation; rate of convergence},
language = {eng},
number = {3},
pages = {523-558},
publisher = {Elsevier},
title = {The approximate Euler method for Lévy driven stochastic differential equations},
url = {http://eudml.org/doc/77857},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Jacod, Jean
AU - Kurtz, Thomas G.
AU - Méléard, Sylvie
AU - Protter, Philip
TI - The approximate Euler method for Lévy driven stochastic differential equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 523
EP - 558
LA - eng
KW - Lévy processes; approximation schemes; weak convergence; stability; Euler-Maruyama method; error expansion; Monte Carlo approximation; rate of convergence
UR - http://eudml.org/doc/77857
ER -

References

top
  1. [1] S. Asmussen, J. Rosiński, Approximations of small jumps of Lévy processes with a view towards simulation, J. Appl. Probab.38 (2001) 482-493. Zbl0989.60047MR1834755
  2. [2] V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations (I): convergence rate of the distribution function, Probab. Theory Related Fields104 (1996) 43-60. Zbl0838.60051MR1367666
  3. [3] S.N. Ethier, M.F. Norman, Error estimate for the diffusion approximation of the Wright–Fisher model, Proc. Nat. Acad. Sci. USA74 (11) (1977) 5096-5098. Zbl0365.92022MR465269
  4. [4] S.N. Ethier, T.G. Kurtz, Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
  5. [5] J. Jacod, P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations, Ann. Probab.26 (1998) 267-307. Zbl0937.60060MR1617049
  6. [6] J. Jacod, The Euler scheme for Lévy driven stochastic differential equations, Prépublication LPMS 711, 2002. 
  7. [7] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Heidelberg, 2003. Zbl0635.60021MR1943877
  8. [8] A. Kohatsu-Higa, N. Yoshida, On the simulation of some functionals of solutions of Lévy driven sde's, Preprint, 2001. 
  9. [9] T.G. Kurtz, P. Protter, Wong–Zakai corrections, random evolutions, and simulation schemes for SDEs, in: Mayer-Wolf E., Merzbach E., Shwartz A. (Eds.), Stochastic Analysis, Academic Press, Boston, MA, 1991, pp. 331-346. Zbl0762.60047MR1119837
  10. [10] T.G. Kurtz, P. Protter, Weak error estimates for simulation schemes for SDEs, 1999. 
  11. [11] G.C. Papanicolaou, W. Kohler, Asymptotic theory of mixing stochastic ordinary differential equations, Comm. Pure Appl. Math.27 (1974) 641-668. Zbl0288.60056MR368142
  12. [12] P. Protter, D. Talay, The Euler scheme for Lévy driven stochastic differential equations, Ann. Probab.25 (1997) 393-423. Zbl0876.60030MR1428514
  13. [13] J. Rosiński, Series representations of Lévy processes from the perspective of point processes, in: Barndorff-Nielsen O.E., Mikosch T., Resnick S.I. (Eds.), Lévy Processes – Theory and Applications, Birkhäuser, Boston, 2001, pp. 401-415. Zbl0985.60048MR1833707
  14. [14] S. Rubenthaler, Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process, Stochastic Process. Appl.103 (2003) 311-349. Zbl1075.60526MR1950769
  15. [15] L. Słominski, Stability of strong solutions of stochastic differential equations, Stochastic Process. Appl.31 (1989) 173-202. Zbl0673.60065
  16. [16] D. Talay, L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl.8 (1990) 94-120. Zbl0718.60058MR1091544

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.