Small deviations for fractional stable processes

Mikhail Lifshits; Thomas Simon

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 4, page 725-752
  • ISSN: 0246-0203

How to cite

top

Lifshits, Mikhail, and Simon, Thomas. "Small deviations for fractional stable processes." Annales de l'I.H.P. Probabilités et statistiques 41.4 (2005): 725-752. <http://eudml.org/doc/77864>.

@article{Lifshits2005,
author = {Lifshits, Mikhail, Simon, Thomas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Fractional Brownian motion; Gaussian process; Linear fractional stable motion; Riemann-Liouville process; Small ball constants; Small ball probabilities; Wavelets},
language = {eng},
number = {4},
pages = {725-752},
publisher = {Elsevier},
title = {Small deviations for fractional stable processes},
url = {http://eudml.org/doc/77864},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Lifshits, Mikhail
AU - Simon, Thomas
TI - Small deviations for fractional stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 4
SP - 725
EP - 752
LA - eng
KW - Fractional Brownian motion; Gaussian process; Linear fractional stable motion; Riemann-Liouville process; Small ball constants; Small ball probabilities; Wavelets
UR - http://eudml.org/doc/77864
ER -

References

top
  1. [1] A. Ayache, M. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion, J. Fourier Anal. Appl.9 (5) (2003) 451-471. Zbl1050.60043MR2027888
  2. [2] P. Baldi, B. Roynette, Some exact equivalents for the Brownian motion in Hölder semi-norm, Probab. Theory Related Fields93 (4) (1992) 457-484. Zbl0767.60078MR1183887
  3. [3] E. Belinsky, W. Linde, Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theoret. Probab.15 (3) (2002) 589-612. Zbl1040.60028MR1922439
  4. [4] P. Berthet, Z. Shi, Small ball estimates for Brownian motion under a weighted sup-norm, Studia Sci. Math. Hung.36 (1–2) (2001) 275-289. Zbl0973.60083MR1768227
  5. [5] J. Bertoin, On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London Math. Soc.28 (5) (1996) 514-520. Zbl0863.60068MR1396154
  6. [6] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. Zbl0617.26001MR898871
  7. [7] R.M. Blumenthal, R.K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc.95 (1960) 263-273. Zbl0107.12401MR119247
  8. [8] A.A. Borovkov, A.A. Mogulskii, On probabilities of small deviations for stochastic processes, Siberian Adv. Math.1 (1) (1991) 39-63. Zbl0718.60024MR1100316
  9. [9] J.C. Bronski, Small ball constants and tight eigenvalue asymptotics for fractional Brownian motions, J. Theoret. Probab.16 (1) (2003) 87-100. Zbl1060.60036MR1956822
  10. [10] X. Chen, J. Kuelbs, W.V. Li, A functional LIL for symmetric stable processes, Ann. Probab.28 (1) (2000) 258-277. Zbl1044.60026MR1756005
  11. [11] X. Chen, Quadratic functionals and small ball probabilities for the m-fold integrated Brownian motion, Ann. Probab.31 (2) (2003) 1052-1077. Zbl1030.60026MR1964958
  12. [12] V.V. Chistyakov, O.E. Galkin, On maps of bounded p-variation with p g t ; 1 , Positivity2 (1) (1998) 19-45. Zbl0904.26005MR1655755
  13. [13] Z. Ciesielski, G. Kerkyacharian, B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math.107 (2) (1993) 171-204. Zbl0809.60004MR1244574
  14. [14] M. Csörgö, E. Horváth, Q.-M. Shao, Convergence of integrals of uniform empirical and quantile processes, Stochastic Process. Appl.45 (2) (1993) 283-294. Zbl0784.60038MR1208874
  15. [15] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. Zbl0776.42018MR1162107
  16. [16] C. Donati-Martin, S. Song, M. Yor, Symmetric stable processes, Fubini's theorem, and some extensions of the Ciesielski–Taylor identities in law, Stochastic Stochastic Rep.50 (1–2) (1994) 1-33. Zbl0831.60049MR1784742
  17. [17] R.M. Dudley, R. Norvaiša, An introduction to p-variation and Young integrals. With emphasis on sample functions of stochastic processes, MaPhySto Lect. Notes, vol. 1, 1998, Univ. of Aarhus. Zbl0937.28001
  18. [18] P. Embrechts, M. Maejima, Self-similar Processes, Princeton University Press, Princeton, 2002. Zbl1008.60003
  19. [19] D. Khoshnevisan, Z. Shi, Chung's law for integrated Brownian motion, Trans. Amer. Math. Soc.350 (10) (1998) 4253-4264. Zbl0902.60031MR1443196
  20. [20] N. Kôno, M. Maejima, Hölder continuity of sample paths of some self-similar stable processes, Tokyo J. Math.14 (1) (1991) 93-100. Zbl0728.60042MR1108158
  21. [21] J. Kuelbs, W.V. Li, Small ball problems for Brownian motion and for the Brownian sheet, J. Theoret. Probab.6 (3) (1993) 547-577. Zbl0780.60079MR1230346
  22. [22] J. Kuelbs, W.V. Li, Q.-M. Shao, Small ball probabilities for Gaussian processes with stationary increments under Hölder norms, J. Theoret. Probab.8 (2) (1995) 361-386. Zbl0820.60023MR1325856
  23. [23] W.V. Li, W. Linde, Existence of small ball constants for fractional Brownian motions, C. R. Acad. Sci. Paris326 (11) (1998) 1329-1334. Zbl0922.60039MR1649147
  24. [24] W.V. Li, W. Linde, Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab.27 (3) (1999) 1556-1578. Zbl0983.60026MR1733160
  25. [25] W.V. Li, Q.-M. Shao, Small ball estimates for Gaussian processes under Sobolev type norms, J. Theoret. Probab.12 (3) (1999) 699-720. Zbl0932.60039MR1702899
  26. [26] W.V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, in: Stochastic Processes: Theory and Methods, Handbook of Statistics, vol. 19, 2001, pp. 533-597. Zbl0987.60053MR1861734
  27. [27] M.A. Lifshits, Asymptotic behavior of small ball probabilities, in: Probab. Theory and Math. Statist., Proc. VII International Vilnius Conference (1998), VSP/TEV, Vilnius, 1999, pp. 453-468. Zbl0994.60017
  28. [28] M.A. Lifshits, W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc.745 (2002). Zbl0999.47034MR1895252
  29. [29] M.A. Lifshits, W. Linde, Small deviations of weighted fractional processes and average non-linear approximation, Trans. Amer. Math. Soc., 2002, in press. Zbl1068.60054MR2115091
  30. [30] D. Marinucci, P.M. Robinson, Alternative forms of fractional Brownian motion, J. Stat. Plann. Inference80 (1–2) (1999) 111-122. Zbl0934.60071MR1713794
  31. [31] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, Cambridge, 1992. Zbl0819.42016MR1228209
  32. [32] A.A. Mogulskii, Small deviations in a space of trajectories, Theor. Probab. Appl.19 (1974) 726-736. Zbl0326.60061MR370701
  33. [33] B. Roynette, Mouvement brownien et espaces de Besov, Stochastic Stochastic Rep.43 (3–4) (1993) 221-260. Zbl0808.60071MR1277166
  34. [34] M. Ryznar, Asymptotic behavior of stable seminorms near the origin, Ann. Probab.14 (1) (1986) 287-298. Zbl0591.60007MR815971
  35. [35] G. Samorodnitsky, Lower tails of self-similar stable processes, Bernoulli4 (1) (1998) 127-142. Zbl0951.60046MR1611887
  36. [36] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994. Zbl0925.60027MR1280932
  37. [37] Q.-M. Shao, A note on small ball probability of a Gaussian process with stationary increments, J. Theoret. Probab.6 (3) (1993) 595-602. Zbl0776.60050MR1230348
  38. [38] Q.-M. Shao, A Gaussian correlation inequality and its application to the existence of small ball constant, Stochastic Process. Appl.107 (2) (2003) 269-287. Zbl1075.60505MR1999791
  39. [39] Z. Shi, Lower tails of quadratic functionals of symmetric stable processes, Prépublication de l'Université Paris-VI, 1999. 
  40. [40] T. Simon, Small ball estimates in p-variations for stable processes, J. Theoret. Probab., 2003, in press. Zbl1074.60055MR2105744
  41. [41] W. Stolz, Une méthode élémentaire pour l'évaluation des petites boules browniennes, C. R. Acad. Sci. Paris316 (11) (1993) 1217-1220. Zbl0776.60101MR1221652
  42. [42] W. Stolz, Small ball probabilities for Gaussian processes under non-uniform norms, J. Theoret. Probab.9 (3) (1996) 613-630. Zbl0855.60039MR1400590
  43. [43] K. Takashima, Sample path properties of ergodic self-similar processes, Osaka J. Math.26 (1) (1989) 159-189. Zbl0719.60040MR991287
  44. [44] S.J. Taylor, Sample path properties of a transient stable process, J. Math. Mech.16 (1967) 1229-1246. Zbl0178.19301MR208684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.