Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion
Jean-François Delmas; Pascal Vogt
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 5, page 817-849
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDelmas, Jean-François, and Vogt, Pascal. "Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 817-849. <http://eudml.org/doc/77869>.
@article{Delmas2005,
author = {Delmas, Jean-François, Vogt, Pascal},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {nonlinear boundary value problem; collision local time; exit measure},
language = {eng},
number = {5},
pages = {817-849},
publisher = {Elsevier},
title = {Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion},
url = {http://eudml.org/doc/77869},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Delmas, Jean-François
AU - Vogt, Pascal
TI - Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 817
EP - 849
LA - eng
KW - nonlinear boundary value problem; collision local time; exit measure
UR - http://eudml.org/doc/77869
ER -
References
top- [1] R. Abraham, Reflecting Brownian snake and a Neumann–Dirichlet problem, Stochastic Process. Appl.89 (2000) 239-260. Zbl1045.60077MR1780289
- [2] R. Abraham, J.-F. Delmas, Solutions of with Neumann’s condition using the Brownian snake, Probab. Theory Related Fields128 (4) (2004) 475-516. Zbl1054.60081
- [3] R.F. Bass, Probabilistic Techniques in Analysis, Springer, New York, 1995. Zbl0817.60001MR1329542
- [4] R. Blumenthal, R. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
- [5] M. Chaleyat-Maurel, N. El Karoui, Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur , cas continu, in: Astérisque, vol. 52–53, 1978, pp. 117-144.
- [6] J.-F. Delmas, Super-mouvement brownien avec catalyse, Stochastics Stochastics Rep.58 (3–4) (1996) 303-347. Zbl0867.60056MR1424697
- [7] T. Duquesne, J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque281 (2002). Zbl1037.60074MR1954248
- [8] E. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ., vol. 50, American Mathematical Society, 2002. Zbl0999.60003MR1883198
- [9] P. Hsu, Reflecting Brownian motion, boundary local time and Neumann problem, PhD thesis, Stanford University, 1984.
- [10] A. Klenke, A review on spatial catalytic branching, in: Gorostiza L., Ivanoff G. (Eds.), Stochastic Models, A Conference in Honor of Don Dawson, Conference Proceedings, vol. 26, Canadian Mathematical Society, Providence, 2000, pp. 245-264. Zbl0956.60096MR1765014
- [11] J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math., ETH Zürich, Birkhäuser, 1999. Zbl0938.60003MR1714707
- [12] B. Maisonneuve, Exit systems, Ann. Probab.3 (1975) 399-411. Zbl0311.60047MR400417
- [13] P. Mörters, P. Vogt, A construction of catalytic super-Brownian motion via collision local time, Stochastic Process. Appl.115 (1) (2005) 77-90. Zbl1072.60070MR2105370
- [14] S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, 1978. Zbl0413.60067MR492329
- [15] K. Sato, H. Tanaka, Local times on the boundary for multi-dimensional reflecting diffusion, Proc. Japan Acad.38 (1962) 699-702. Zbl0138.11302MR148109
- [16] K. Sato, T. Ueno, Multi-dimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ.3 (4) (1965) 529-605. Zbl0219.60057MR198547
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.