On an invariance principle for phase separation lines

Lev Greenberg; Dmitry Ioffe

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 5, page 871-885
  • ISSN: 0246-0203

How to cite

top

Greenberg, Lev, and Ioffe, Dmitry. "On an invariance principle for phase separation lines." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 871-885. <http://eudml.org/doc/77872>.

@article{Greenberg2005,
author = {Greenberg, Lev, Ioffe, Dmitry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Ising model; random path representation; Ornstein-Zernike decay of correlations; Brownian bridge; Ruelle operator; renormalization; local limit theorems},
language = {eng},
number = {5},
pages = {871-885},
publisher = {Elsevier},
title = {On an invariance principle for phase separation lines},
url = {http://eudml.org/doc/77872},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Greenberg, Lev
AU - Ioffe, Dmitry
TI - On an invariance principle for phase separation lines
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 871
EP - 885
LA - eng
KW - Ising model; random path representation; Ornstein-Zernike decay of correlations; Brownian bridge; Ruelle operator; renormalization; local limit theorems
UR - http://eudml.org/doc/77872
ER -

References

top
  1. [1] D.B. Abraham, P. Reed, Interface profile of the Ising ferromagnet in two dimensions, Commun. Math. Phys.49 (1) (1976) 35-46. MR421542
  2. [2] M. Aizenman, D.J. Barsky, R. Fernández, The phase transition in a general class of Ising-type models is sharp, J. Statist. Phys.47 (3/4) (1987) 342-374. MR894398
  3. [3] A. Akutsu, N. Akutsu, Relationship between the anisotropic interface tension, the scaled interface width and the equilibrium shape in two dimensions, J. Phys. A: Math. Gen.19 (1986) 2813-2820. 
  4. [4] J. Bricmont, J. Fröhlich, Statistical mechanical methods in particle structure analysis of lattice field theories. II. Scalar and surface models, Commun. Math. Phys.98 (4) (1985) 553-578. Zbl1223.82010MR789871
  5. [5] J. Bricmont, J.L. Lebowitz, C.-E. Pfister, On the local structure of the phase separation line in the two-dimensional Ising system, J. Statist. Phys.26 (2) (1981) 313-332. MR643712
  6. [6] M. Campanino, D. Ioffe, Ornstein–Zernike theory for the Bernoulli bond percolation on Z d , Ann. Probab.30 (2002) 652-682. Zbl1013.60077MR1905854
  7. [7] M. Campanino, D. Ioffe, Y. Velenik, Ornstein–Zernike theory for finite range Ising models above T c , Probab. Theory Related Fields125 (3) (2003) 305-349. Zbl1032.60093MR1964456
  8. [8] M. Campanino, D. Ioffe, Y. Velenik, Random path representation and sharp correlations asymptotics at high-temperatures, in: Stochastic Analysis on Large Scale Interacting Systems, Adv. Stud. Pure Math., vol. 39, Math. Soc. Japan, Tokyo, 2004, pp. 29-52. Zbl1074.82015MR2073329
  9. [9] R. Dobrushin, A statistical behaviour of shapes of boundaries of phases, in: Kotecký R. (Ed.), Phase Transitions: Mathematics, Physics, Biology 0 e x 0 e x , World Scientific, Singapore, 1993, pp. 60-70. 
  10. [10] R. Dobrushin, O. Hryniv, Fluctuations of shapes of large areas under paths of random walks, Probab. Theory Related Fields105 (4) (1996) 423-458. Zbl0853.60057MR1402652
  11. [11] R. Dobrushin, O. Hryniv, Fluctuations of the phase boundary in the 2D Ising ferromagnet, Commun. Math. Phys.189 (2) (1997) 395-445. Zbl0888.60083MR1480026
  12. [12] R. Dobrushin, R. Kotecký, S. Shlosman, Wulff construction. A global shape from local interaction, Transl. Math. Monographs, vol. 104, American Mathematical Society, Providence, RI, 1992. Zbl0917.60103MR1181197
  13. [13] R. Durrett, On the shape of a random string, Ann. Probab.7 (1978) 1014-1027. Zbl0421.60016MR548895
  14. [14] G. Gallavotti, The phase separation line in the two-dimensional Ising model, Commun. Math. Phys.27 (1972) 103-136. MR342116
  15. [15] Y. Higuchi, On some limit theorem related to the phase separation line in the two-dimensional Ising model, Z. Wahrsch. Verw. Gebiete50 (3) (1979) 287-315. Zbl0406.60084MR554548
  16. [16] Y. Higuchi, J. Murai, J. Wang, The Dobrushin–Hryniv theory for the two-dimensional lattice Widom–Rowlinson model, Adv. Stud. Pure Math., in press. Zbl1140.82321
  17. [17] O. Hryniv, On local behaviour of the phase separation line in the 2D Ising model, Probab. Theory Related Fields110 (1) (1998) 91-107. Zbl0897.60038MR1602044
  18. [18] O. Hryniv, R. Kotecký, Surface tension and the Ornstein–Zernike behaviour for the 2D Blume–Capel model, J. Statist. Phys. (2001). Zbl1003.82005MR1882748
  19. [19] D. Ioffe, Large deviations for the 2D Ising model: a lower bound without cluster expansions, J. Statist. Phys.74 (1–2) (1994) 411-432. Zbl0946.82502MR1257822
  20. [20] Y. Kovchegov, The Brownian bridge asymptotics in the subcritical phase of Bernoulli bond percolation model, Markov Process. Related Fields10 (2) (2004) 327-344. Zbl1162.82306MR2082577
  21. [21] Ch.-E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta64 (7) (1991) 953-1054. MR1149430
  22. [22] C.-E. Pfister, Y. Velenik, Large deviations and continuum limit in the 2D Ising model, Probab. Theory Related Fields109 (1997) 435-506. Zbl0904.60022MR1483597
  23. [23] C.-E. Pfister, Y. Velenik, Interface, surface tension and reentrant pinning transition in the 2D Ising model, Commun. Math. Phys.204 (2) (1999) 269-312. Zbl0937.82016MR1704276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.