On an invariance principle for phase separation lines
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 5, page 871-885
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGreenberg, Lev, and Ioffe, Dmitry. "On an invariance principle for phase separation lines." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 871-885. <http://eudml.org/doc/77872>.
@article{Greenberg2005,
author = {Greenberg, Lev, Ioffe, Dmitry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Ising model; random path representation; Ornstein-Zernike decay of correlations; Brownian bridge; Ruelle operator; renormalization; local limit theorems},
language = {eng},
number = {5},
pages = {871-885},
publisher = {Elsevier},
title = {On an invariance principle for phase separation lines},
url = {http://eudml.org/doc/77872},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Greenberg, Lev
AU - Ioffe, Dmitry
TI - On an invariance principle for phase separation lines
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 871
EP - 885
LA - eng
KW - Ising model; random path representation; Ornstein-Zernike decay of correlations; Brownian bridge; Ruelle operator; renormalization; local limit theorems
UR - http://eudml.org/doc/77872
ER -
References
top- [1] D.B. Abraham, P. Reed, Interface profile of the Ising ferromagnet in two dimensions, Commun. Math. Phys.49 (1) (1976) 35-46. MR421542
- [2] M. Aizenman, D.J. Barsky, R. Fernández, The phase transition in a general class of Ising-type models is sharp, J. Statist. Phys.47 (3/4) (1987) 342-374. MR894398
- [3] A. Akutsu, N. Akutsu, Relationship between the anisotropic interface tension, the scaled interface width and the equilibrium shape in two dimensions, J. Phys. A: Math. Gen.19 (1986) 2813-2820.
- [4] J. Bricmont, J. Fröhlich, Statistical mechanical methods in particle structure analysis of lattice field theories. II. Scalar and surface models, Commun. Math. Phys.98 (4) (1985) 553-578. Zbl1223.82010MR789871
- [5] J. Bricmont, J.L. Lebowitz, C.-E. Pfister, On the local structure of the phase separation line in the two-dimensional Ising system, J. Statist. Phys.26 (2) (1981) 313-332. MR643712
- [6] M. Campanino, D. Ioffe, Ornstein–Zernike theory for the Bernoulli bond percolation on , Ann. Probab.30 (2002) 652-682. Zbl1013.60077MR1905854
- [7] M. Campanino, D. Ioffe, Y. Velenik, Ornstein–Zernike theory for finite range Ising models above , Probab. Theory Related Fields125 (3) (2003) 305-349. Zbl1032.60093MR1964456
- [8] M. Campanino, D. Ioffe, Y. Velenik, Random path representation and sharp correlations asymptotics at high-temperatures, in: Stochastic Analysis on Large Scale Interacting Systems, Adv. Stud. Pure Math., vol. 39, Math. Soc. Japan, Tokyo, 2004, pp. 29-52. Zbl1074.82015MR2073329
- [9] R. Dobrushin, A statistical behaviour of shapes of boundaries of phases, in: Kotecký R. (Ed.), Phase Transitions: Mathematics, Physics, Biology , World Scientific, Singapore, 1993, pp. 60-70.
- [10] R. Dobrushin, O. Hryniv, Fluctuations of shapes of large areas under paths of random walks, Probab. Theory Related Fields105 (4) (1996) 423-458. Zbl0853.60057MR1402652
- [11] R. Dobrushin, O. Hryniv, Fluctuations of the phase boundary in the 2D Ising ferromagnet, Commun. Math. Phys.189 (2) (1997) 395-445. Zbl0888.60083MR1480026
- [12] R. Dobrushin, R. Kotecký, S. Shlosman, Wulff construction. A global shape from local interaction, Transl. Math. Monographs, vol. 104, American Mathematical Society, Providence, RI, 1992. Zbl0917.60103MR1181197
- [13] R. Durrett, On the shape of a random string, Ann. Probab.7 (1978) 1014-1027. Zbl0421.60016MR548895
- [14] G. Gallavotti, The phase separation line in the two-dimensional Ising model, Commun. Math. Phys.27 (1972) 103-136. MR342116
- [15] Y. Higuchi, On some limit theorem related to the phase separation line in the two-dimensional Ising model, Z. Wahrsch. Verw. Gebiete50 (3) (1979) 287-315. Zbl0406.60084MR554548
- [16] Y. Higuchi, J. Murai, J. Wang, The Dobrushin–Hryniv theory for the two-dimensional lattice Widom–Rowlinson model, Adv. Stud. Pure Math., in press. Zbl1140.82321
- [17] O. Hryniv, On local behaviour of the phase separation line in the 2D Ising model, Probab. Theory Related Fields110 (1) (1998) 91-107. Zbl0897.60038MR1602044
- [18] O. Hryniv, R. Kotecký, Surface tension and the Ornstein–Zernike behaviour for the 2D Blume–Capel model, J. Statist. Phys. (2001). Zbl1003.82005MR1882748
- [19] D. Ioffe, Large deviations for the 2D Ising model: a lower bound without cluster expansions, J. Statist. Phys.74 (1–2) (1994) 411-432. Zbl0946.82502MR1257822
- [20] Y. Kovchegov, The Brownian bridge asymptotics in the subcritical phase of Bernoulli bond percolation model, Markov Process. Related Fields10 (2) (2004) 327-344. Zbl1162.82306MR2082577
- [21] Ch.-E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta64 (7) (1991) 953-1054. MR1149430
- [22] C.-E. Pfister, Y. Velenik, Large deviations and continuum limit in the 2D Ising model, Probab. Theory Related Fields109 (1997) 435-506. Zbl0904.60022MR1483597
- [23] C.-E. Pfister, Y. Velenik, Interface, surface tension and reentrant pinning transition in the 2D Ising model, Commun. Math. Phys.204 (2) (1999) 269-312. Zbl0937.82016MR1704276
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.