Thick points for the Cauchy process

Olivier Daviaud

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 5, page 953-970
  • ISSN: 0246-0203

How to cite

top

Daviaud, Olivier. "Thick points for the Cauchy process." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 953-970. <http://eudml.org/doc/77876>.

@article{Daviaud2005,
author = {Daviaud, Olivier},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {multifractals analysis},
language = {eng},
number = {5},
pages = {953-970},
publisher = {Elsevier},
title = {Thick points for the Cauchy process},
url = {http://eudml.org/doc/77876},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Daviaud, Olivier
TI - Thick points for the Cauchy process
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 953
EP - 970
LA - eng
KW - multifractals analysis
UR - http://eudml.org/doc/77876
ER -

References

top
  1. [1] L. Ahlfors, Complex Analysis, McGraw-Hill, 1979. Zbl0154.31904MR510197
  2. [2] J. Bertoin, Levy Processes, Cambridge University Press, New York, 1996. Zbl0861.60003MR1406564
  3. [3] E.S. Boylan, Local time for a class of Markov processes, Illinois J. Math.8 (1964) 19-39. Zbl0126.33702MR158434
  4. [4] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for transient symmetric stable processes, Electronic J. Probab.4 (10) (1999) 1-13. Zbl0927.60077MR1690314
  5. [5] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab.28 (2000) 1-35. Zbl1130.60311MR1755996
  6. [6] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk, Acta Math.186 (2001) 239-270. Zbl1008.60063MR1846031
  7. [7] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for intersections of planar Brownian paths, Trans. Amer. Math. Soc.354 (2002) 4969-5003. Zbl1007.60077MR1926845
  8. [8] D. Gilbard, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  9. [9] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. Zbl0734.60060MR1121940
  10. [10] L. Marsalle, Slow points and fast points of local times, Ann. Probab.27 (1999) 150-165. Zbl0945.60069MR1681130
  11. [11] E.A. Perkins, S.J. Taylor, Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields76 (1987) 257-289. Zbl0613.60071MR912654
  12. [12] D. Ray, Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. Amer. Math. Soc.106 (1963) 436-444. Zbl0119.14602MR145599
  13. [13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1998. Zbl0731.60002
  14. [14] N.R. Shieh, S.J. Taylor, Logarithmic multifractal spectrum of stable occupation measure, Stochastic Process Appl.79 (1998) 249-261. Zbl0932.60041MR1632209
  15. [15] C.J. Stone, The set of zeros of a semi-stable process, Illinois J. Math.7 (1963) 631-637. Zbl0121.12906MR158439

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.