Eigenvalues of Hermite and Laguerre ensembles : large beta asymptotics

Ioana Dumitriu; Alan Edelman

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 6, page 1083-1099
  • ISSN: 0246-0203

How to cite

top

Dumitriu, Ioana, and Edelman, Alan. "Eigenvalues of Hermite and Laguerre ensembles : large beta asymptotics." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 1083-1099. <http://eudml.org/doc/77879>.

@article{Dumitriu2005,
author = {Dumitriu, Ioana, Edelman, Alan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Eigenvalue fluctuation; Hermite ensemble; Laguerre ensmble; tridiagonal matrix models},
language = {eng},
number = {6},
pages = {1083-1099},
publisher = {Elsevier},
title = {Eigenvalues of Hermite and Laguerre ensembles : large beta asymptotics},
url = {http://eudml.org/doc/77879},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Dumitriu, Ioana
AU - Edelman, Alan
TI - Eigenvalues of Hermite and Laguerre ensembles : large beta asymptotics
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 1083
EP - 1099
LA - eng
KW - Eigenvalue fluctuation; Hermite ensemble; Laguerre ensmble; tridiagonal matrix models
UR - http://eudml.org/doc/77879
ER -

References

top
  1. [1] Abramowitz M., Stegun I.A. (Eds.), Handbook of Mathematical Functions, Dover, New York, 1970. 
  2. [2] T. Baker, P. Forrester, The Calogero–Sutherland model and generalized classical polynomials, Commun. Math. Phys.188 (1997) 175-216. Zbl0903.33010MR1471336
  3. [3] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997. Zbl0879.65017MR1463942
  4. [4] P. Diaconis, Patterns in eigenvalues: the 70th Josiah Willard Gibbs Lecture, Bull. Amer. Math. Soc.40 (2003) 155-178. Zbl1161.15302MR1962294
  5. [5] I. Dumitriu, A. Edelman, Matrix models for beta-ensembles, J. Math. Phys.43 (2002) 5830-5847. Zbl1060.82020MR1936554
  6. [6] I. Dumitriu, A. Edelman, G. Shuman, MOPS: Multivariate Orthogonal Polynomials (symbolically), 2004, Preprint found at, lanl.arxiv.org/abs/math-ph/0409066. Zbl1122.33019MR2325917
  7. [7] K. Johansson, On fluctuations of random hermitian matrices, Duke Math. J.91 (1998) 151-203. Zbl1039.82504MR1487983
  8. [8] K. Johansson, Shape fluctuations and random matrices, Commun. Math. Phys.209 (2000) 437-476. Zbl0969.15008MR1737991
  9. [9] I.M. Johnstone, On the distribution of the largest principal component, Ann. Statist.29 (2) (2001) 295-327. Zbl1016.62078MR1863961
  10. [10] M. Lal Mehta, Random Matrices, Academic Press, Boston, 1991. Zbl0780.60014MR1083764
  11. [11] G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1975. MR372517
  12. [12] J.W. Silverstein, Z.D. Bai, CLT of linear spectral statistics of large dimensional sample covariance matrices, Preprint, 2003, Ann. Probab., accepted for publication. Zbl1063.60022MR2040792
  13. [13] C.A. Tracy, H. Widom, On orthogonal and symplectic matrix ensembles, J. Statist. Phys.92 (1996) 809-835. Zbl0942.60099MR1385083
  14. [14] C.A. Tracy, H. Widom, The distribution of the largest eigenvalue in the Gaussian ensembles, in: Calogero–Moser–Sutherland Models, CRM Ser. in Math. Phys., vol. 4, Springer-Verlag, 2000, pp. 461-472. MR1844228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.