Ergodicity for the stochastic complex Ginzburg–Landau equations

Cyril Odasso

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 4, page 417-454
  • ISSN: 0246-0203

How to cite

top

Odasso, Cyril. "Ergodicity for the stochastic complex Ginzburg–Landau equations." Annales de l'I.H.P. Probabilités et statistiques 42.4 (2006): 417-454. <http://eudml.org/doc/77902>.

@article{Odasso2006,
author = {Odasso, Cyril},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markovian transition semigroup; invariant measure; ergodicity; coupling method; Girsanov's formula; Foias-Prodi estimate},
language = {eng},
number = {4},
pages = {417-454},
publisher = {Elsevier},
title = {Ergodicity for the stochastic complex Ginzburg–Landau equations},
url = {http://eudml.org/doc/77902},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Odasso, Cyril
TI - Ergodicity for the stochastic complex Ginzburg–Landau equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 4
SP - 417
EP - 454
LA - eng
KW - Markovian transition semigroup; invariant measure; ergodicity; coupling method; Girsanov's formula; Foias-Prodi estimate
UR - http://eudml.org/doc/77902
ER -

References

top
  1. [1] M. Barton-Smith, Invariant measure for the stochastic Ginzburg Landau equation, NoDEA Nonlinear Differential Equations Appl.11 (1) (2004) 29-52. Zbl1060.60062MR2035365
  2. [2] P. Bebouche, A. Jüngel, Inviscid limits of the Complex Ginzburg–Landau equation, Comm. Math. Phys.214 (2000) 201-226. Zbl0978.35059MR1794271
  3. [3] J. Bricmont, A. Kupiainen, R. Lefevere, Exponential mixing for the 2D stochastic Navier–Stokes dynamics, Comm. Math. Phys.230 (1) (2002) 87-132. Zbl1033.76011MR1930573
  4. [4] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, in: Encyclopedia Math. Appl., Cambridge University Press, 1992. Zbl0761.60052MR1207136
  5. [5] A. de Bouard, A. Debussche, A stochastic non-linear Schrödinger equation with multiplicative noise, Comm. Math. Phys.205 (1999) 161-181. Zbl0952.60061MR1706888
  6. [6] A. de Bouard, A. Debussche, The stochastic non-linear Schrödinger equation in H 1 , Stochastic Anal. Appl.21 (1) (2003) 97-126. Zbl1027.60065MR1954077
  7. [7] W. E, J.C. Mattingly, Y.G. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation, Comm. Math. Phys.224 (2001) 83-106. Zbl0994.60065MR1868992
  8. [8] V. Ginzburg, L. Landau, On the theorie of superconductivity, Zh. Eksp. Fiz.20 (1950) 1064, English transl., in: Haar Ter (Ed.), Men of Physics: L.D. Landau, vol. I, Pergamon Press, New York, 1965, pp. 546-568. 
  9. [9] M. Hairer, Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields124 (3) (2002) 345-380. Zbl1032.60056MR1939651
  10. [10] G. Huber, P. Alstrom, Universal decay of vortex density in two dimensions, Physica A195 (1993) 448-456. Zbl0803.76030
  11. [11] S. Kuksin, On exponential convergence to a stationary measure for nonlinear PDEs, in: The M.I. Viishik Moscow PDE seminar, Amer. Math. Soc. Transl. Ser. (2), vol. 206, Amer. Math. Soc., 2002. MR1939491
  12. [12] S. Kuksin, A. Shirikyan, Stochastic dissipative PDE's and Gibbs measures, Comm. Math. Phys.213 (2000) 291-330. Zbl0974.60046MR1785459
  13. [13] S. Kuksin, A. Shirikyan, A coupling approach to randomly forced PDE's I, Comm. Math. Phys.221 (2001) 351-366. Zbl0991.60056MR1845328
  14. [14] S. Kuksin, A. Piatnitski, A. Shirikyan, A coupling approach to randomly forced PDE's II, Comm. Math. Phys.230 (1) (2002) 81-85. Zbl1010.60066MR1927233
  15. [15] S. Kuksin, A. Shirikyan, Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl.1 (2002) 567-602. Zbl1021.37044MR1912412
  16. [16] S. Kuksin, A. Shirikyan, Randomly forced CGL equation: Stationary measure and the inviscid limit, J. Phys. A37 (12) (2004) 3805-3822. Zbl1047.35061MR2039838
  17. [17] J. Mattingly, Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics, Comm. Math. Phys.230 (2002) 421-462. Zbl1054.76020MR1937652
  18. [18] J. Mattingly, On recent progress for the stochastic Navier–Stokes equations, in: Journées Équations aux Dérivées Partielles, Exp. No XI, vol. 52, Univ. Nantes, Nantes, 2003. Zbl1044.58044MR2050597
  19. [19] A. Newel, J. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech.38 (1969) 279-303. Zbl0187.25102
  20. [20] A. Newel, J. Whitehead, Review of the finite bandwidth concept, in: Leipholz H. (Ed.), Proceedings of the Internat. Union of Theor. and Appl. Math., Springer, Berlin, 1971, pp. 284-289. Zbl0247.76039
  21. [21] C. Odasso, Propriétés ergodiques de l'équation de Ginzburg–Landau complexe bruitée, Mémoire de DEA, 2003. 
  22. [22] A. Shirikyan, Exponential mixing for 2D Navier–Stokes equation perturbed by an unbounded noise, J. Math. Fluid Mech.6 (2) (2004) 169-193. Zbl1095.35032MR2053582

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.