Ergodicity for the stochastic complex Ginzburg–Landau equations
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 4, page 417-454
- ISSN: 0246-0203
Access Full Article
topHow to cite
topOdasso, Cyril. "Ergodicity for the stochastic complex Ginzburg–Landau equations." Annales de l'I.H.P. Probabilités et statistiques 42.4 (2006): 417-454. <http://eudml.org/doc/77902>.
@article{Odasso2006,
author = {Odasso, Cyril},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markovian transition semigroup; invariant measure; ergodicity; coupling method; Girsanov's formula; Foias-Prodi estimate},
language = {eng},
number = {4},
pages = {417-454},
publisher = {Elsevier},
title = {Ergodicity for the stochastic complex Ginzburg–Landau equations},
url = {http://eudml.org/doc/77902},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Odasso, Cyril
TI - Ergodicity for the stochastic complex Ginzburg–Landau equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 4
SP - 417
EP - 454
LA - eng
KW - Markovian transition semigroup; invariant measure; ergodicity; coupling method; Girsanov's formula; Foias-Prodi estimate
UR - http://eudml.org/doc/77902
ER -
References
top- [1] M. Barton-Smith, Invariant measure for the stochastic Ginzburg Landau equation, NoDEA Nonlinear Differential Equations Appl.11 (1) (2004) 29-52. Zbl1060.60062MR2035365
- [2] P. Bebouche, A. Jüngel, Inviscid limits of the Complex Ginzburg–Landau equation, Comm. Math. Phys.214 (2000) 201-226. Zbl0978.35059MR1794271
- [3] J. Bricmont, A. Kupiainen, R. Lefevere, Exponential mixing for the 2D stochastic Navier–Stokes dynamics, Comm. Math. Phys.230 (1) (2002) 87-132. Zbl1033.76011MR1930573
- [4] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, in: Encyclopedia Math. Appl., Cambridge University Press, 1992. Zbl0761.60052MR1207136
- [5] A. de Bouard, A. Debussche, A stochastic non-linear Schrödinger equation with multiplicative noise, Comm. Math. Phys.205 (1999) 161-181. Zbl0952.60061MR1706888
- [6] A. de Bouard, A. Debussche, The stochastic non-linear Schrödinger equation in , Stochastic Anal. Appl.21 (1) (2003) 97-126. Zbl1027.60065MR1954077
- [7] W. E, J.C. Mattingly, Y.G. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation, Comm. Math. Phys.224 (2001) 83-106. Zbl0994.60065MR1868992
- [8] V. Ginzburg, L. Landau, On the theorie of superconductivity, Zh. Eksp. Fiz.20 (1950) 1064, English transl., in: Haar Ter (Ed.), Men of Physics: L.D. Landau, vol. I, Pergamon Press, New York, 1965, pp. 546-568.
- [9] M. Hairer, Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields124 (3) (2002) 345-380. Zbl1032.60056MR1939651
- [10] G. Huber, P. Alstrom, Universal decay of vortex density in two dimensions, Physica A195 (1993) 448-456. Zbl0803.76030
- [11] S. Kuksin, On exponential convergence to a stationary measure for nonlinear PDEs, in: The M.I. Viishik Moscow PDE seminar, Amer. Math. Soc. Transl. Ser. (2), vol. 206, Amer. Math. Soc., 2002. MR1939491
- [12] S. Kuksin, A. Shirikyan, Stochastic dissipative PDE's and Gibbs measures, Comm. Math. Phys.213 (2000) 291-330. Zbl0974.60046MR1785459
- [13] S. Kuksin, A. Shirikyan, A coupling approach to randomly forced PDE's I, Comm. Math. Phys.221 (2001) 351-366. Zbl0991.60056MR1845328
- [14] S. Kuksin, A. Piatnitski, A. Shirikyan, A coupling approach to randomly forced PDE's II, Comm. Math. Phys.230 (1) (2002) 81-85. Zbl1010.60066MR1927233
- [15] S. Kuksin, A. Shirikyan, Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl.1 (2002) 567-602. Zbl1021.37044MR1912412
- [16] S. Kuksin, A. Shirikyan, Randomly forced CGL equation: Stationary measure and the inviscid limit, J. Phys. A37 (12) (2004) 3805-3822. Zbl1047.35061MR2039838
- [17] J. Mattingly, Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics, Comm. Math. Phys.230 (2002) 421-462. Zbl1054.76020MR1937652
- [18] J. Mattingly, On recent progress for the stochastic Navier–Stokes equations, in: Journées Équations aux Dérivées Partielles, Exp. No XI, vol. 52, Univ. Nantes, Nantes, 2003. Zbl1044.58044MR2050597
- [19] A. Newel, J. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech.38 (1969) 279-303. Zbl0187.25102
- [20] A. Newel, J. Whitehead, Review of the finite bandwidth concept, in: Leipholz H. (Ed.), Proceedings of the Internat. Union of Theor. and Appl. Math., Springer, Berlin, 1971, pp. 284-289. Zbl0247.76039
- [21] C. Odasso, Propriétés ergodiques de l'équation de Ginzburg–Landau complexe bruitée, Mémoire de DEA, 2003.
- [22] A. Shirikyan, Exponential mixing for 2D Navier–Stokes equation perturbed by an unbounded noise, J. Math. Fluid Mech.6 (2) (2004) 169-193. Zbl1095.35032MR2053582
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.