On recent progress for the stochastic Navier Stokes equations

Jonathan Mattingly

Journées équations aux dérivées partielles (2003)

  • page 1-52
  • ISSN: 0752-0360

Abstract

top
We give an overview of the ideas central to some recent developments in the ergodic theory of the stochastically forced Navier Stokes equations and other dissipative stochastic partial differential equations. Since our desire is to make the core ideas clear, we will mostly work with a specific example : the stochastically forced Navier Stokes equations. To further clarify ideas, we will also examine in detail a toy problem. A few general theorems are given. Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and hypoellipticity are all discussed.

How to cite

top

Mattingly, Jonathan. "On recent progress for the stochastic Navier Stokes equations." Journées équations aux dérivées partielles (2003): 1-52. <http://eudml.org/doc/93438>.

@article{Mattingly2003,
abstract = {We give an overview of the ideas central to some recent developments in the ergodic theory of the stochastically forced Navier Stokes equations and other dissipative stochastic partial differential equations. Since our desire is to make the core ideas clear, we will mostly work with a specific example : the stochastically forced Navier Stokes equations. To further clarify ideas, we will also examine in detail a toy problem. A few general theorems are given. Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and hypoellipticity are all discussed.},
author = {Mattingly, Jonathan},
journal = {Journées équations aux dérivées partielles},
keywords = {stochastic Navier Stokes equations; ergodicity; coupling; exponential mixing; hypoellipticity; stochastic dissipative PDE},
language = {eng},
pages = {1-52},
publisher = {Université de Nantes},
title = {On recent progress for the stochastic Navier Stokes equations},
url = {http://eudml.org/doc/93438},
year = {2003},
}

TY - JOUR
AU - Mattingly, Jonathan
TI - On recent progress for the stochastic Navier Stokes equations
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 52
AB - We give an overview of the ideas central to some recent developments in the ergodic theory of the stochastically forced Navier Stokes equations and other dissipative stochastic partial differential equations. Since our desire is to make the core ideas clear, we will mostly work with a specific example : the stochastically forced Navier Stokes equations. To further clarify ideas, we will also examine in detail a toy problem. A few general theorems are given. Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and hypoellipticity are all discussed.
LA - eng
KW - stochastic Navier Stokes equations; ergodicity; coupling; exponential mixing; hypoellipticity; stochastic dissipative PDE
UR - http://eudml.org/doc/93438
ER -

References

top
  1. [Arn98] Arnold.Random dynamical systems. Springer-Verlag, Berlin,1998 Zbl0834.58026MR1723992
  2. [AS03] Andrei Acrachev and Andrey Sarychev. Navier-stokes equation controlled by degenerate forcing: Controllabillity in finite-dimentional projections. Preprint, 2003. MR2082964
  3. [Bak02] Yu. Yu. Bakhtin. Existence and uniqueness of stationary solution of %nonlinear stochastic differential equation with memory. Theory Probab. Appl, 47(4):764-769, 2002. Zbl1054.60062MR2001790
  4. [Bax91] Peter H. Baxendale. Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms. In Spatial stochastic processes, volume 19 of Progress in Probability, pages 189-218. Birkhäuser Boston, Boston, MA, 1991. Zbl0744.60063MR1144097
  5. [Bel95] Denis R. Bell. Degenerate stochastic differential equations and hypoellipticity. Longman, Harlow, 1995. Zbl0859.60051MR1471702
  6. [BKL00] J. Bricmont, A. Kupiainen, and R. Lefevere. Probabilistic estimates for the two-dimensional stochastic Navier-Stokes equations.J. Statist. Phys., 100(3-4):743-756, 2000. Zbl0972.60044MR1788483
  7. [BKL01] J. Bricmont, A. Kupiainen, and R. Lefevere. Ergodicity of the 2D Navier-Stokes equations with random forcing. Comm. Math. Phys., 224(1):65-81, 2001. Dedicated to Joel L. Lebowitz. Zbl0994.60066MR1868991
  8. [BKL02] J. Bricmont, A. Kupiainen, and R. Lefevere. Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Comm. Math. Phys., 230(1):87-132, 2002. Zbl1033.76011MR1930573
  9. [BM03] Yuri Bakhtin and Jonathan C. Mattingly. Stationary solutions of stochastic differential equation with memory and stochastic partial differential equations. Preprint, 2003. Zbl1098.34063
  10. [CDF97] Hans Crauel, Arnaud Debussche, and Franco Flandoli. Random attractors. J. Dynam. Differential Equations, 9(2):307-341, 1997. Zbl0884.58064MR1451294
  11. [Cer99] Sandra Cerrai. Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients. Stochastics Stochastics Rep., 67(1-2):17-51, 1999. Zbl0935.60049MR1717811
  12. [CF88] Peter Constantin and Ciprian Foiaș. Navier-Stokes Equations. University of Chicago Press, Chicago, 1988. Zbl0687.35071MR972259
  13. [CFNT89] P. Constantin, C. Foiaș, B. Nicolaenko, and R. Temam. Integral manifolds and inertial manifolds for dissipative partial differential equations, volume 70 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin, 1989. Zbl0683.58002MR966192
  14. [CFS82] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ. Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York-Berlins, 1982. Zbl0493.28007MR832433
  15. [CK97] Pao-Liu Chow and Rafail Z. Khasminskii. Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl., 15(5):671-699, 1997. Zbl0899.60056MR1478880
  16. [DG95] Charles R. Doering and J. D. Gibbon. Applied analysis of the Navier-Stokes equations}. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995. Zbl0838.76016MR1325465
  17. [DLJ88] R. W. R. Darling and Yves Le Jan. The statistical equilibrium of an isotropic stochastic flow with negative Lyapounov exponents is trivial. In Séminaire de Probabilités, XXII, volume 1321 of Lecture Notes in Math., pages 175-185. Springer, Berlins, 1988. Zbl0647.60076MR960525
  18. [DPZ92] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge, 1992. Zbl0761.60052MR1207136
  19. [DPZ96] Giuseppe Da Prato and Jerzy Zabczyk. Ergodicity for Infinite Dimensional Systems. Cambridge, 1996. Zbl0849.60052
  20. [DPZ02] Giuseppe Da Prato and Jerzy Zabczyk. Second order partial differential equations in Hilbert spaces, volume 293 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. Zbl1012.35001MR1985790
  21. [DT95] Charles R. Doering and Edriss S. Titi. Exponential decay rate of the power spectrum for solutions of the Navier-Stokes equations. Phys. Fluids, 7(6):1384-1390, 1995. Zbl1023.76513MR1331063
  22. [Dud76] R. M. Dudley. Probabilities and metrics. Matematisk Institut, Aarhus Universitet, Aarhus, 1976. Convergence of laws on metric spaces, with a view to statistical testing, Lecture Notes Series, No. 45. Zbl0355.60004MR488202
  23. [EFNT94] A. Eden, C. Foias, B Nicolaenko, and R. Temam. Exponential Attractors for dissipative Evolution equations. Research in Applied Mathematics. John Wiley and Sons and Masson, 1994. Zbl0842.58056MR1335230
  24. [EH01] J.-P. Eckmann and M. Hairer. Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys., 219(3):523-565, 2001. Zbl0983.60058MR1838749
  25. [EKMS00] Weinan E, K. Khanin, A. Mazel, and Ya. Sinai. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. (2), 151(3):877-960, 2000. Zbl0972.35196MR1779561
  26. [EL02] Weinan E and Di Liu. Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Statist. Phys., 108(5/6):1125-1156, 2002. Zbl1023.60057MR1933448
  27. [EM01] Weinan E and Jonathan C. Mattingly. Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation. Comm. Pure Appl. Math., 54(11):1386-1402, 2001. Zbl1024.76012MR1846802
  28. [EMS01] Weinan E, J. C. Mattingly, and Ya G. Sinai. Gibbsian dynamics and ergodicity for the stochastic forced navier-stokes equation. Comm. Math. Phys., 224(1), 2001. Zbl0994.60065MR1868992
  29. [EVE00] Weinan E and Eric Vanden Eijnden. Generalized flows, intrinsic stochasticity, and turbulent transport. Proc. Natl. Acad. Sci. USA, 97(15):8200-8205 (electronic), 2000. Zbl0967.76038MR1771642
  30. [Fer97] Benedetta Ferrario. Ergodic results for stochastic Navier-Stokes equation. Stochastics and Stochastics Reports, 60(3-4):271-288, 1997. Zbl0882.60059MR1467721
  31. [FG98] F. Flandoli and F. Gozzi. Kolmogorov equation associated to a stochastic Navier-Stokes equation. J. Funct. Anal., 160(1):312-336, 1998. Zbl0928.60044MR1658680
  32. [Fla94] Franco Flandoli. Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1:403-426, 1994. Zbl0820.35108MR1300150
  33. [FM95] Franco Flandoli and B. Maslowski. Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. in Math. Phys., 171:119-141, 1995. Zbl0845.35080MR1346374
  34. [FP67] C. Foiaș and G. Prodi. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova, 39:1-34, 1967. Zbl0176.54103MR223716
  35. [FST88] Ciprian Foias, George R. Sell, and Roger Temam. Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations, 73(2):309-353s, 1988. Zbl0643.58004MR943945
  36. [FT89] C. Foiaș and R. Temam. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 87(2):359-369, 1989. Zbl0702.35203MR1026858
  37. [Hai02] M. Hairer. Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields, 124(3):345-380, 2002. Zbl1032.60056MR1939651
  38. [Jur97] Velimir Jurdjevic. Geometric control theory, volume 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Zbl0940.93005MR1425878
  39. [Kif86] Yuri Kifer. Ergodic theory of random transformations. Birkhäuser Boston Inc., Boston, MAs, 1986. Zbl0604.28014MR884892
  40. [KPS02] Sergei Kuksin, Andrey Piatnitski, and Armen Shirikyan. A coupling approach to randomly forced nonlinear PDEs. II. Comm. Math. Phys., 230(1):81-85, 2002. Zbl1010.60066MR1927233
  41. [KS00] Sergei Kuksin and Armen Shirikyan. Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys., 213(2):291-330, 2000. Zbl0974.60046MR1785459
  42. [KS02] Sergei Kuksin and Armen Shirikyan. Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9), 81(6):567-602, 2002. Zbl1021.37044MR1912412
  43. [Kuk03] Sergei Kuksin. Eulerian limit for 2d statistical hydrodynamics. Preprint, 2003. MR2070104
  44. [KS84] Shigeo Kusuoka and Daniel Stroock. Applications of the Malliavin calculus. I. In Stochastic analysis (Katata/Kyoto, 1982), spages 271-306. North-Holland, Amsterdam, 1984. Zbl0546.60056MR780762
  45. [LJ87] Y. Le Jan. Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Statist., 23(1):111-120, 1987. Zbl0614.60047MR877387
  46. [LO97] C. David Levermore and Marcel Oliver. Analyticity of solutions for a generalized Euler equation. J. Differential Equations, 133(2):321-339, 1997. Zbl0876.35090MR1427856
  47. [Mat98] Jonathan C. Mattingly. The Stochastically forced Navier-Stokes equations: energy estimates and phase space contraction}. PhD thesis, Princeton University, 1998. 
  48. [Mat99] Jonathan C. Mattingly. Ergodicity of 2 D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys., 206(2):273-288, 1999. Zbl0953.37023MR1722141
  49. [Mat02a] Jonathan C. Mattingly. Contractivity and ergodicity of the random map x | x - θ | . Theory of Probability and its Applications, 47(2):388-397, 2002. Zbl1032.60064MR2003207
  50. [Mat02b] Jonathan C. Mattingly. The dissipative scale of the stochastics Navier-Stokes equation: regularization and analyticity. J. Statist. Phys., 108(5-6):1157-1179, 2002. Zbl1030.60049MR1933449
  51. [Mat02c] Jonathan C. Mattingly. Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys., 230(3):421-462, 2002. Zbl1054.76020MR1937652
  52. [MP03] Jonathan C. Mattingly and Étienne Pardoux. Malliavin calculus and the randomly forced Navier Stokes equation. Preprint, 2003. Zbl1113.60058
  53. [MR] R. Mikulevicius and B. L. Rozovskii. Stochastic navier-stokes equations for turbulent flows. Preprint. Zbl1062.60061MR2050201
  54. [MS99] J. C. Mattingly and Ya. G. Sinai. An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations. Commun. Contemp. Math., 1(4):497-516, 1999. Zbl0961.35112MR1719695
  55. [MS03] Jonathan C. Mattingly and Toufic M. Suidan. The small scales of the stochastic navier stokes equations under rough forcing. Preprint, 2003. 
  56. [MSH02] J. C. Mattingly, A.M. Stuart, and D. J. Higham. Ergodicity for SDEs and approximations: Locally lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101, no. 2, 185-232, 2002. Zbl1075.60072MR1931266
  57. [MT93] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, 1993. Zbl0925.60001MR1287609
  58. [MY02] Nader Masmoudi and Lai-Sang Young. Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs. Comm. Math. Phys., 227(3):461-481, 2002. Zbl1009.37049MR1910827
  59. [Nor86] James Norris. Simplified Malliavin calculus. In Séminaire de Probabilités, XX, 1984/85, pages 101-130. Springer, Berlin,s 1986. Zbl0609.60066MR942019
  60. [Oks92] Bernt Oksendal. Stochastic Differential Equations. Springer-Verlag, 3nd edition, 1992. Zbl0747.60052MR1217084
  61. [OT00] Marcel Oliver and Edriss S. Titi. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in 𝐫 n . J. Funct. Anal., 172(1):1-18, 2000. Zbl0960.35081MR1749867
  62. [Rom02] Marco Romito. Ergodicity of the finite dimensional approximation of the 3d navier-stokes equations forced by a degenerate. Peprint, 2002. 
  63. [RY94] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 1994. Zbl0731.60002MR1303781
  64. [Sch97] Björn Schmalfuss. Qualitative properties for the stochastic Navier-Stokes equation. Nonlinear Anal., 28(9):1545-1563, 1997. Zbl0882.60058MR1431206
  65. [Shi02] Armin Shirikyan. A version of the law of large number and applications. In Probabilistic Methods in Fluids. World Scientific, 2002. Zbl1066.76020MR2083377
  66. [Sin94] Ya. G. Sinaĭ. Topics in ergodic theory, volume 44 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1994. Zbl0805.58005MR1258087
  67. [Tem95] Roger Temam. Navier-Stokes equations and nonlinear functional analysis, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1995. Zbl0833.35110MR1318914
  68. [VF88] M.J. Vishik and A.V. Fursikov. Mathematical Problems of Statistical Hydrodynamics. Kluwer Academic Publishers, 1988. Updated version of Russian original of same name. Zbl0688.35077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.