The compact support property for measure-valued processes

János Engländer; Ross G. Pinsky

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 5, page 535-552
  • ISSN: 0246-0203

How to cite

top

Engländer, János, and Pinsky, Ross G.. "The compact support property for measure-valued processes." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 535-552. <http://eudml.org/doc/77906>.

@article{Engländer2006,
author = {Engländer, János, Pinsky, Ross G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {semilinear equation; elliptic equation; positive solutions; uniqueness of the Caushy problem; superprocess; superdiffusion; super-Brownian motion; -transform; weighted superprocess},
language = {eng},
number = {5},
pages = {535-552},
publisher = {Elsevier},
title = {The compact support property for measure-valued processes},
url = {http://eudml.org/doc/77906},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Engländer, János
AU - Pinsky, Ross G.
TI - The compact support property for measure-valued processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 535
EP - 552
LA - eng
KW - semilinear equation; elliptic equation; positive solutions; uniqueness of the Caushy problem; superprocess; superdiffusion; super-Brownian motion; -transform; weighted superprocess
UR - http://eudml.org/doc/77906
ER -

References

top
  1. [1] P. Baras, M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal.18 (1984) 111-149. Zbl0582.35060MR762868
  2. [2] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal.75 (1980) 1-6. Zbl0459.35032MR592099
  3. [3] D.A. Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI—1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080
  4. [4] D.A. Dawson, I. Iscoe, E.A. Perkins, Super-Brownian motion: path properties and hitting probabilities, Probab. Theory Related Fields83 (1989) 135-205. Zbl0692.60063MR1012498
  5. [5] R.D. DeBlassie, On hitting single points by a multidimensional diffusion, Stochastics Stochastics Rep.65 (1998) 1-11. Zbl0916.60066MR1708432
  6. [6] E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields89 (1991) 89-115. Zbl0722.60062MR1109476
  7. [7] E.B. Dynkin, Superprocesses and partial differential equations, Ann. Probab.21 (1993) 1185-1262. Zbl0806.60066MR1235414
  8. [8] S. Dynkin, E.B. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math.49 (1996) 125-176. Zbl0861.60083MR1371926
  9. [9] J. Engländer, Criteria for the existence of positive solutions to the equation ρ Δ u = u 2 in R d for all d 1 – a new probabilistic approach, Positivity4 (2000) 327-337. Zbl0962.35048
  10. [10] J. Engländer, R. Pinsky, On the construction and support properties of measure-valued diffusions on D R d with spatially dependent branching, Ann. Probab.27 (1999) 684-730. Zbl0979.60078
  11. [11] J. Englan̈der, R. Pinsky, Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form u t = L u + V u - γ u p in R n , J. Differential Equations192 (2003) 396-428. Zbl1081.35050
  12. [12] K. Fleischmann, A. Sturm, A super-stable motion with infinite mean branching, Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 513-537. Zbl1052.60065MR2086012
  13. [13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  14. [14] R. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. Zbl0858.31001MR1326606
  15. [15] R. Pinsky, Positive solutions of reaction diffusion equations with super-linear absorption: universal bounds, uniqueness for the Cauchy problem, boundedness of stationary solutions, J. Differential Equations, in press. Zbl1087.35047MR2183378
  16. [16] Y. Ren, Support properties of super-Brownian motions with spatially dependent branching rate, Stochastic Process. Appl.110 (2004) 19-44. Zbl1075.60114MR2052135
  17. [17] L. Veron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal.5 (1981) 225-242. Zbl0457.35031MR607806

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.