The compact support property for measure-valued processes
János Engländer; Ross G. Pinsky
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 5, page 535-552
- ISSN: 0246-0203
Access Full Article
topHow to cite
topEngländer, János, and Pinsky, Ross G.. "The compact support property for measure-valued processes." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 535-552. <http://eudml.org/doc/77906>.
@article{Engländer2006,
author = {Engländer, János, Pinsky, Ross G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {semilinear equation; elliptic equation; positive solutions; uniqueness of the Caushy problem; superprocess; superdiffusion; super-Brownian motion; -transform; weighted superprocess},
language = {eng},
number = {5},
pages = {535-552},
publisher = {Elsevier},
title = {The compact support property for measure-valued processes},
url = {http://eudml.org/doc/77906},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Engländer, János
AU - Pinsky, Ross G.
TI - The compact support property for measure-valued processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 535
EP - 552
LA - eng
KW - semilinear equation; elliptic equation; positive solutions; uniqueness of the Caushy problem; superprocess; superdiffusion; super-Brownian motion; -transform; weighted superprocess
UR - http://eudml.org/doc/77906
ER -
References
top- [1] P. Baras, M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal.18 (1984) 111-149. Zbl0582.35060MR762868
- [2] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal.75 (1980) 1-6. Zbl0459.35032MR592099
- [3] D.A. Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI—1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080
- [4] D.A. Dawson, I. Iscoe, E.A. Perkins, Super-Brownian motion: path properties and hitting probabilities, Probab. Theory Related Fields83 (1989) 135-205. Zbl0692.60063MR1012498
- [5] R.D. DeBlassie, On hitting single points by a multidimensional diffusion, Stochastics Stochastics Rep.65 (1998) 1-11. Zbl0916.60066MR1708432
- [6] E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields89 (1991) 89-115. Zbl0722.60062MR1109476
- [7] E.B. Dynkin, Superprocesses and partial differential equations, Ann. Probab.21 (1993) 1185-1262. Zbl0806.60066MR1235414
- [8] S. Dynkin, E.B. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math.49 (1996) 125-176. Zbl0861.60083MR1371926
- [9] J. Engländer, Criteria for the existence of positive solutions to the equation in for all – a new probabilistic approach, Positivity4 (2000) 327-337. Zbl0962.35048
- [10] J. Engländer, R. Pinsky, On the construction and support properties of measure-valued diffusions on with spatially dependent branching, Ann. Probab.27 (1999) 684-730. Zbl0979.60078
- [11] J. Englan̈der, R. Pinsky, Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form in , J. Differential Equations192 (2003) 396-428. Zbl1081.35050
- [12] K. Fleischmann, A. Sturm, A super-stable motion with infinite mean branching, Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 513-537. Zbl1052.60065MR2086012
- [13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
- [14] R. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. Zbl0858.31001MR1326606
- [15] R. Pinsky, Positive solutions of reaction diffusion equations with super-linear absorption: universal bounds, uniqueness for the Cauchy problem, boundedness of stationary solutions, J. Differential Equations, in press. Zbl1087.35047MR2183378
- [16] Y. Ren, Support properties of super-Brownian motions with spatially dependent branching rate, Stochastic Process. Appl.110 (2004) 19-44. Zbl1075.60114MR2052135
- [17] L. Veron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal.5 (1981) 225-242. Zbl0457.35031MR607806
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.