A super-stable motion with infinite mean branching

Klaus Fleischmann; Anja Sturm

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 5, page 513-537
  • ISSN: 0246-0203

How to cite

top

Fleischmann, Klaus, and Sturm, Anja. "A super-stable motion with infinite mean branching." Annales de l'I.H.P. Probabilités et statistiques 40.5 (2004): 513-537. <http://eudml.org/doc/77822>.

@article{Fleischmann2004,
author = {Fleischmann, Klaus, Sturm, Anja},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Neveu's continuous state branching process; superprocess; branching process with infinite mean; non-Lipschitz nonlinearity; immortal process; instantaneous mass propagation; locally countably infinite biodiversity},
language = {eng},
number = {5},
pages = {513-537},
publisher = {Elsevier},
title = {A super-stable motion with infinite mean branching},
url = {http://eudml.org/doc/77822},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Fleischmann, Klaus
AU - Sturm, Anja
TI - A super-stable motion with infinite mean branching
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 5
SP - 513
EP - 537
LA - eng
KW - Neveu's continuous state branching process; superprocess; branching process with infinite mean; non-Lipschitz nonlinearity; immortal process; instantaneous mass propagation; locally countably infinite biodiversity
UR - http://eudml.org/doc/77822
ER -

References

top
  1. [1] D. Aldous, Stopping times and tightness, Ann. Probab.6 (2) (1978) 335-340. Zbl0391.60007MR474446
  2. [2] J. Bertoin, J.-F. Le Gall, The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes, Probab. Theory Related Fields117 (2000) 249-266. Zbl0963.60086
  3. [3] E. Bolthausen, A.-S. Sznitman, On Ruelle's probability cascades and an abstract cavity method, Comm. Math. Phys.197 (2) (1998) 247-276. Zbl0927.60071MR1652734
  4. [4] A. Bovier, I. Kurkova, Derrida's generalized random energy models 4: Continuous state branching and coalescents, WIAS Berlin, Preprint 854, 2003. MR2013661
  5. [5] D.A. Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI, 1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
  6. [6] D.A. Dawson, V. Vinogradov, Almost-sure path properties of (2,d,β)-superprocesses, Stochastic Process. Appl.51 (2) (1994) 221-258. Zbl0810.60028
  7. [7] E.B. Dynkin, An Introduction to Branching Measure-Valued Processes, CRM Monograph Series, vol. 6, AMS, 1994. Zbl0824.60001MR1280712
  8. [8] N. El Karoui, S. Roelly, Propriétés de martingales, explosion et représentation de Lévy–Khintchine d'une classe de processus de branchement à valeurs mesures, Stochastic Process. Appl.38 (1991) 239-266. Zbl0743.60081
  9. [9] A.M. Etheridge, An Introduction to Superprocesses, University Lecture Series, vol. 20, American Mathematical Society, Providence, RI, 2000. Zbl0971.60053MR1779100
  10. [10] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics, Wiley, 1986. Zbl0592.60049MR838085
  11. [11] P.I. Fitzsimmons, Construction and regularity of measure-valued Markov branching processes, Israel J. Math.64 (3) (1988) 337-361. Zbl0673.60089MR995575
  12. [12] P.I. Fitzsimmons, Corrections to “Construction and regularity of measure-valued Markov branching processes”, Israel J. Math.73 (1) (1991) 127. Zbl0731.60075
  13. [13] K. Fleischmann, Critical behaviour of some measure-valued processes, Math. Nachr.135 (1988) 131-147. Zbl0655.60071MR944225
  14. [14] K. Fleischmann, J. Gärtner, Occupation time processes at a critical point, Math. Nachr.125 (1986) 275-290. Zbl0596.60080MR847367
  15. [15] K. Fleischmann, A. Klenke, The biodiversity of catalytic super-Brownian motion, Ann. Appl. Probab.10 (1) (2000) 1121-1136. Zbl1073.60055MR1810867
  16. [16] K. Fleischmann, L. Mytnik, Regularity and irregularity of densities for super-α-stable motion with Neveu's branching mechanism, WIAS Berlin, Preprint (in preparation), 2004. 
  17. [17] K. Fleischmann, V. Vakhtel, Large scale behavior of a spatial version of Neveu's branching process, WIAS Berlin, Preprint (in preparation), 2004. 
  18. [18] D.R. Grey, Almost sure convergence in Markov branching processes with infinite mean, J. Appl. Probab.14 (1977) 702-716. Zbl0378.60064MR478377
  19. [19] J. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969. Zbl0186.40901MR419901
  20. [20] I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Related Fields71 (1) (1986) 85-116. Zbl0555.60034MR814663
  21. [21] A. Jakubowski, On the Skorokhod topology, Ann. Inst. Henri Poincaré22 (3) (1986) 263-285. Zbl0609.60005MR871083
  22. [22] O. Kallenberg, Random Measures, Academic Press, 1976. Zbl0345.60032MR431373
  23. [23] J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser Verlag, Basel, 1999. Zbl0938.60003MR1714707
  24. [24] L. Mytnik, E. Perkins, Regularity and irregularity of (1+β)-stable super-Brownian motion, Ann. Probab.31 (3) (2003) 1413-1440. Zbl1042.60030
  25. [25] J. Neveu, A continuous state branching process in relation with the GREM model of spin glasses theory, Rapport Interne no 267, CMP École Polytechnique, 1992. 
  26. [26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer, Berlin, 1983. Zbl0516.47023MR710486
  27. [27] E. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in: Bernard P. (Ed.), École d'été de probabilités de Saint Flour XXIX–1999, Lecture Notes in Mathematics, vol. 1781, Berlin, Springer, 2002, pp. 125-329. Zbl1020.60075
  28. [28] J. Pitman, Coalescents with multiple collisions, Ann. Probab.27 (4) (1999) 1870-1902. Zbl0963.60079MR1742892
  29. [29] D. Ruelle, A mathematical reformulation of Derrida's REM and GREM, Comm. Math. Phys.108 (1987) 225-239. Zbl0617.60100MR875300
  30. [30] J. Smoller, Shock Waves and Reaction-Diffusion Equations, A Series of Comprehensive Studies in Mathematics, vol. 258, Springer, Berlin, 1983. Zbl0508.35002MR688146
  31. [31] S. Watanabe, A limit theorem of branching processes and continuous state branching, J. Math. Kyoto University8 (1968) 141-167. Zbl0159.46201MR237008
  32. [32] K. Yosida, Functional Analysis, A Series of Comprehensive Studies in Mathematics, vol. 123, Springer, Berlin, 1971. Zbl0217.16001MR500055
  33. [33] V.M. Zolotarev, One-Dimensional Stable Distributions, Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, RI, 1986. Zbl0589.60015MR854867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.