A super-stable motion with infinite mean branching
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 5, page 513-537
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFleischmann, Klaus, and Sturm, Anja. "A super-stable motion with infinite mean branching." Annales de l'I.H.P. Probabilités et statistiques 40.5 (2004): 513-537. <http://eudml.org/doc/77822>.
@article{Fleischmann2004,
author = {Fleischmann, Klaus, Sturm, Anja},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Neveu's continuous state branching process; superprocess; branching process with infinite mean; non-Lipschitz nonlinearity; immortal process; instantaneous mass propagation; locally countably infinite biodiversity},
language = {eng},
number = {5},
pages = {513-537},
publisher = {Elsevier},
title = {A super-stable motion with infinite mean branching},
url = {http://eudml.org/doc/77822},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Fleischmann, Klaus
AU - Sturm, Anja
TI - A super-stable motion with infinite mean branching
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 5
SP - 513
EP - 537
LA - eng
KW - Neveu's continuous state branching process; superprocess; branching process with infinite mean; non-Lipschitz nonlinearity; immortal process; instantaneous mass propagation; locally countably infinite biodiversity
UR - http://eudml.org/doc/77822
ER -
References
top- [1] D. Aldous, Stopping times and tightness, Ann. Probab.6 (2) (1978) 335-340. Zbl0391.60007MR474446
- [2] J. Bertoin, J.-F. Le Gall, The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes, Probab. Theory Related Fields117 (2000) 249-266. Zbl0963.60086
- [3] E. Bolthausen, A.-S. Sznitman, On Ruelle's probability cascades and an abstract cavity method, Comm. Math. Phys.197 (2) (1998) 247-276. Zbl0927.60071MR1652734
- [4] A. Bovier, I. Kurkova, Derrida's generalized random energy models 4: Continuous state branching and coalescents, WIAS Berlin, Preprint 854, 2003. MR2013661
- [5] D.A. Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI, 1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
- [6] D.A. Dawson, V. Vinogradov, Almost-sure path properties of (2,d,β)-superprocesses, Stochastic Process. Appl.51 (2) (1994) 221-258. Zbl0810.60028
- [7] E.B. Dynkin, An Introduction to Branching Measure-Valued Processes, CRM Monograph Series, vol. 6, AMS, 1994. Zbl0824.60001MR1280712
- [8] N. El Karoui, S. Roelly, Propriétés de martingales, explosion et représentation de Lévy–Khintchine d'une classe de processus de branchement à valeurs mesures, Stochastic Process. Appl.38 (1991) 239-266. Zbl0743.60081
- [9] A.M. Etheridge, An Introduction to Superprocesses, University Lecture Series, vol. 20, American Mathematical Society, Providence, RI, 2000. Zbl0971.60053MR1779100
- [10] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics, Wiley, 1986. Zbl0592.60049MR838085
- [11] P.I. Fitzsimmons, Construction and regularity of measure-valued Markov branching processes, Israel J. Math.64 (3) (1988) 337-361. Zbl0673.60089MR995575
- [12] P.I. Fitzsimmons, Corrections to “Construction and regularity of measure-valued Markov branching processes”, Israel J. Math.73 (1) (1991) 127. Zbl0731.60075
- [13] K. Fleischmann, Critical behaviour of some measure-valued processes, Math. Nachr.135 (1988) 131-147. Zbl0655.60071MR944225
- [14] K. Fleischmann, J. Gärtner, Occupation time processes at a critical point, Math. Nachr.125 (1986) 275-290. Zbl0596.60080MR847367
- [15] K. Fleischmann, A. Klenke, The biodiversity of catalytic super-Brownian motion, Ann. Appl. Probab.10 (1) (2000) 1121-1136. Zbl1073.60055MR1810867
- [16] K. Fleischmann, L. Mytnik, Regularity and irregularity of densities for super-α-stable motion with Neveu's branching mechanism, WIAS Berlin, Preprint (in preparation), 2004.
- [17] K. Fleischmann, V. Vakhtel, Large scale behavior of a spatial version of Neveu's branching process, WIAS Berlin, Preprint (in preparation), 2004.
- [18] D.R. Grey, Almost sure convergence in Markov branching processes with infinite mean, J. Appl. Probab.14 (1977) 702-716. Zbl0378.60064MR478377
- [19] J. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969. Zbl0186.40901MR419901
- [20] I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Related Fields71 (1) (1986) 85-116. Zbl0555.60034MR814663
- [21] A. Jakubowski, On the Skorokhod topology, Ann. Inst. Henri Poincaré22 (3) (1986) 263-285. Zbl0609.60005MR871083
- [22] O. Kallenberg, Random Measures, Academic Press, 1976. Zbl0345.60032MR431373
- [23] J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser Verlag, Basel, 1999. Zbl0938.60003MR1714707
- [24] L. Mytnik, E. Perkins, Regularity and irregularity of (1+β)-stable super-Brownian motion, Ann. Probab.31 (3) (2003) 1413-1440. Zbl1042.60030
- [25] J. Neveu, A continuous state branching process in relation with the GREM model of spin glasses theory, Rapport Interne no 267, CMP École Polytechnique, 1992.
- [26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer, Berlin, 1983. Zbl0516.47023MR710486
- [27] E. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in: Bernard P. (Ed.), École d'été de probabilités de Saint Flour XXIX–1999, Lecture Notes in Mathematics, vol. 1781, Berlin, Springer, 2002, pp. 125-329. Zbl1020.60075
- [28] J. Pitman, Coalescents with multiple collisions, Ann. Probab.27 (4) (1999) 1870-1902. Zbl0963.60079MR1742892
- [29] D. Ruelle, A mathematical reformulation of Derrida's REM and GREM, Comm. Math. Phys.108 (1987) 225-239. Zbl0617.60100MR875300
- [30] J. Smoller, Shock Waves and Reaction-Diffusion Equations, A Series of Comprehensive Studies in Mathematics, vol. 258, Springer, Berlin, 1983. Zbl0508.35002MR688146
- [31] S. Watanabe, A limit theorem of branching processes and continuous state branching, J. Math. Kyoto University8 (1968) 141-167. Zbl0159.46201MR237008
- [32] K. Yosida, Functional Analysis, A Series of Comprehensive Studies in Mathematics, vol. 123, Springer, Berlin, 1971. Zbl0217.16001MR500055
- [33] V.M. Zolotarev, One-Dimensional Stable Distributions, Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, RI, 1986. Zbl0589.60015MR854867
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.