Two results on continuity and boundedness of stochastic convolutions
Stanisław Kwapień; Michael B. Marcus; Jan Rosiński
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 5, page 553-566
- ISSN: 0246-0203
Access Full Article
topHow to cite
topKwapień, Stanisław, Marcus, Michael B., and Rosiński, Jan. "Two results on continuity and boundedness of stochastic convolutions." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 553-566. <http://eudml.org/doc/77907>.
@article{Kwapień2006,
author = {Kwapień, Stanisław, Marcus, Michael B., Rosiński, Jan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {sample boundedness; sample continuity; semimartingales; Lévy processes},
language = {eng},
number = {5},
pages = {553-566},
publisher = {Elsevier},
title = {Two results on continuity and boundedness of stochastic convolutions},
url = {http://eudml.org/doc/77907},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Kwapień, Stanisław
AU - Marcus, Michael B.
AU - Rosiński, Jan
TI - Two results on continuity and boundedness of stochastic convolutions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 553
EP - 566
LA - eng
KW - sample boundedness; sample continuity; semimartingales; Lévy processes
UR - http://eudml.org/doc/77907
ER -
References
top- [1] Z. Brzeźniak, S. Peszat, J. Zabczyk, Continuity of stochastic convolutions, Czechoslovak Math. J.51 (2001) 679-684. Zbl1001.60056MR1864035
- [2] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 45, Cambridge Univ. Press, Cambridge, 1992. Zbl0761.60052MR1207136
- [3] A. de Acosta, Exponential moments of vector valued random series and triangular arrays, Ann. Probab.8 (1980) 381-389. Zbl0435.60004MR566603
- [4] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Willey & Sons, Inc., 2000. Zbl0974.28006MR1782432
- [5] J.L. Doob, Stochastic Processes, J. Willey & Sons, Inc., Chapman & Hall, New York, Londres, 1953. Zbl0696.60003MR58896
- [6] M. Errami, F. Russo, Covariation de convolution de martingales, C. R. Acad. Sci. Paris Sér. I Math.326 (5) (1998) 601-606. Zbl0917.60054MR1649341
- [7] X. Fernique, Continuité et théorème central limite pour les transformées de Fourier des mesures aléatoires du second ordre, Wahr. Verw. Gebiete42 (1978) 57-66. Zbl0393.60020MR486036
- [8] X. Fernique, Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens, Université de Montréal, Centre de Recherches Mathématiques, Montreal, 1997. MR1472975
- [9] D. Heath, A. Jarrow, A. Morton, Bond pricing and the term structure of interest rate: a new methodology for contingent claim valuation, Econometrica60 (1992) 77-105. Zbl0751.90009
- [10] N. Jain, M.B. Marcus, Continuity of subgaussian processes, in: Probability on Banach Spaces, Adv. Probab., vol. 4, Marcel Dekker, New York, 1978, pp. 81-196. MR515431
- [11] J.P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, Cambridge, 1985. Zbl0571.60002MR833073
- [12] M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, Springer-Verlag, New York, 1991. Zbl0748.60004MR1102015
- [13] M.B. Marcus, Gaussian lacunary series and the modulus of continuity for Gaussian processes, Z. Wahr. Verw. Gebiete22 (1972) 301-322. Zbl0222.60026MR309180
- [14] M.B. Marcus, G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Princeton Univ. Press, 1981. Zbl0474.43004MR630532
- [15] M.B. Marcus, J. Rosiński, Continuity and boundedness of infinitely divisible processes: a Poisson point process approach, J. Theoret. Probab.18 (2005) 109-160. Zbl1071.60025MR2132274
- [16] G. Pisier, A remarkable homogeneous Banach algebra, Israel J. Math.34 (1979) 38-44. Zbl0428.46035MR571394
- [17] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, New York, 1990. Zbl0694.60047MR1037262
- [18] J. Rosiński, On path properties of certain infinitely divisible processes, Stochastic Process. Appl.33 (1989) 73-87. Zbl0715.60051MR1027109
- [19] J. Rosiński, Series representations of Lévy processes from the perspective of point processes, in: Barndorff-Nielsen O.E., Mikosch T., Resnick S.I. (Eds.), Lévy Processes – Theory and Applications, Birkhäuser, Boston, 2001, pp. 401-415. Zbl0985.60048MR1833707
- [20] J. Rosiński, G. Samorodnitsky, Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for Lévy chaos, Ann. Probab.24 (1996) 422-437. Zbl0854.60017MR1387643
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.