Two results on continuity and boundedness of stochastic convolutions

Stanisław Kwapień; Michael B. Marcus; Jan Rosiński

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 5, page 553-566
  • ISSN: 0246-0203

How to cite

top

Kwapień, Stanisław, Marcus, Michael B., and Rosiński, Jan. "Two results on continuity and boundedness of stochastic convolutions." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 553-566. <http://eudml.org/doc/77907>.

@article{Kwapień2006,
author = {Kwapień, Stanisław, Marcus, Michael B., Rosiński, Jan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {sample boundedness; sample continuity; semimartingales; Lévy processes},
language = {eng},
number = {5},
pages = {553-566},
publisher = {Elsevier},
title = {Two results on continuity and boundedness of stochastic convolutions},
url = {http://eudml.org/doc/77907},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Kwapień, Stanisław
AU - Marcus, Michael B.
AU - Rosiński, Jan
TI - Two results on continuity and boundedness of stochastic convolutions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 553
EP - 566
LA - eng
KW - sample boundedness; sample continuity; semimartingales; Lévy processes
UR - http://eudml.org/doc/77907
ER -

References

top
  1. [1] Z. Brzeźniak, S. Peszat, J. Zabczyk, Continuity of stochastic convolutions, Czechoslovak Math. J.51 (2001) 679-684. Zbl1001.60056MR1864035
  2. [2] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 45, Cambridge Univ. Press, Cambridge, 1992. Zbl0761.60052MR1207136
  3. [3] A. de Acosta, Exponential moments of vector valued random series and triangular arrays, Ann. Probab.8 (1980) 381-389. Zbl0435.60004MR566603
  4. [4] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Willey & Sons, Inc., 2000. Zbl0974.28006MR1782432
  5. [5] J.L. Doob, Stochastic Processes, J. Willey & Sons, Inc., Chapman & Hall, New York, Londres, 1953. Zbl0696.60003MR58896
  6. [6] M. Errami, F. Russo, Covariation de convolution de martingales, C. R. Acad. Sci. Paris Sér. I Math.326 (5) (1998) 601-606. Zbl0917.60054MR1649341
  7. [7] X. Fernique, Continuité et théorème central limite pour les transformées de Fourier des mesures aléatoires du second ordre, Wahr. Verw. Gebiete42 (1978) 57-66. Zbl0393.60020MR486036
  8. [8] X. Fernique, Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens, Université de Montréal, Centre de Recherches Mathématiques, Montreal, 1997. MR1472975
  9. [9] D. Heath, A. Jarrow, A. Morton, Bond pricing and the term structure of interest rate: a new methodology for contingent claim valuation, Econometrica60 (1992) 77-105. Zbl0751.90009
  10. [10] N. Jain, M.B. Marcus, Continuity of subgaussian processes, in: Probability on Banach Spaces, Adv. Probab., vol. 4, Marcel Dekker, New York, 1978, pp. 81-196. MR515431
  11. [11] J.P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, Cambridge, 1985. Zbl0571.60002MR833073
  12. [12] M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, Springer-Verlag, New York, 1991. Zbl0748.60004MR1102015
  13. [13] M.B. Marcus, Gaussian lacunary series and the modulus of continuity for Gaussian processes, Z. Wahr. Verw. Gebiete22 (1972) 301-322. Zbl0222.60026MR309180
  14. [14] M.B. Marcus, G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Princeton Univ. Press, 1981. Zbl0474.43004MR630532
  15. [15] M.B. Marcus, J. Rosiński, Continuity and boundedness of infinitely divisible processes: a Poisson point process approach, J. Theoret. Probab.18 (2005) 109-160. Zbl1071.60025MR2132274
  16. [16] G. Pisier, A remarkable homogeneous Banach algebra, Israel J. Math.34 (1979) 38-44. Zbl0428.46035MR571394
  17. [17] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, New York, 1990. Zbl0694.60047MR1037262
  18. [18] J. Rosiński, On path properties of certain infinitely divisible processes, Stochastic Process. Appl.33 (1989) 73-87. Zbl0715.60051MR1027109
  19. [19] J. Rosiński, Series representations of Lévy processes from the perspective of point processes, in: Barndorff-Nielsen O.E., Mikosch T., Resnick S.I. (Eds.), Lévy Processes – Theory and Applications, Birkhäuser, Boston, 2001, pp. 401-415. Zbl0985.60048MR1833707
  20. [20] J. Rosiński, G. Samorodnitsky, Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for Lévy chaos, Ann. Probab.24 (1996) 422-437. Zbl0854.60017MR1387643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.