Exchangeable measures for subshifts
J. Aaronson; H. Nakada; O. Sarig
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 6, page 727-751
- ISSN: 0246-0203
Access Full Article
topHow to cite
topAaronson, J., Nakada, H., and Sarig, O.. "Exchangeable measures for subshifts." Annales de l'I.H.P. Probabilités et statistiques 42.6 (2006): 727-751. <http://eudml.org/doc/77917>.
@article{Aaronson2006,
author = {Aaronson, J., Nakada, H., Sarig, O.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {exchangeability; tail equivalence relations; beta expansions; countable Markov shifts},
language = {eng},
number = {6},
pages = {727-751},
publisher = {Elsevier},
title = {Exchangeable measures for subshifts},
url = {http://eudml.org/doc/77917},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Aaronson, J.
AU - Nakada, H.
AU - Sarig, O.
TI - Exchangeable measures for subshifts
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 6
SP - 727
EP - 751
LA - eng
KW - exchangeability; tail equivalence relations; beta expansions; countable Markov shifts
UR - http://eudml.org/doc/77917
ER -
References
top- [1] J. Aaronson, M. Denker, Group extensions of Gibbs–Markov maps, Probab. Theory Related Fields123 (1) (2002) 38-40. Zbl1028.37003MR1906436
- [2] J. Aaronson, M. Denker, M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc.337 (2) (1993) 495-548. Zbl0789.28010MR1107025
- [3] J. Aaronson, M. Denker, O. Sarig, R. Zweimüller, Aperiodicity of cocycles and conditional local limit theorems, Stoch. Dyn.4 (1) (2004) 31-62. Zbl1077.37010MR2069366
- [4] J. Aaronson, H. Nakada, O. Sarig, R. Solomyak, Invariant measures and asymptotics for some skew products, Israel J. Math.128 (2002) 93-134. Zbl1006.28013MR1910377
- [5] J. Aaronson, H. Nakada, O. Sarig, R. Solomyak, Corrections to: Invariant measures and asymptotics for some skew products, Israel J. Math.138 (2003) 377-379. Zbl1095.28508MR2031964
- [6] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci.65 (2) (1989) 131-141. Zbl0682.68081
- [7] K.L. Chung, Markov Chains with Stationary Transition Probabilities, Springer, Heidelberg, 1960. Zbl0146.38401MR116388
- [8] P. Diaconis, D. Freedman, De Finetti's theorem for Markov chains, Ann. Probab.8 (8) (1980) 115-130. Zbl0426.60064MR556418
- [9] E. Effros, Transformation groups and -algebras, Ann. of Math. (2)81 (1965) 38-55. Zbl0152.33203
- [10] J. Feldman, C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc.234 (2) (1977) 289-324. Zbl0369.22009MR578656
- [11] L. Fuchs, Abelian Groups, Internat. Ser. Monogr. Pure Appl. Math., Pergamon Press, New York, 1960. Zbl0100.02803MR111783
- [12] A.O. Gel'fond, A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat.23 (1959) 809-814, (in Russian). Zbl0092.27702MR109817
- [13] J. Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc.101 (1961) 124-138. Zbl0119.10802MR136681
- [14] G. Greschonig, K. Schmidt, Ergodic decomposition of quasi-invariant probability measures, part 2, Colloq. Math.84/85 (2000) 495-514. Zbl0972.37003MR1784210
- [15] L.A. Grigorenko, On the σ-algebra of symmetric events for a countable Markov chain, Theory Probab. Appl.24 (1979) 199-204. Zbl0432.60083
- [16] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc.80 (1955) 470-501. Zbl0066.29604MR76206
- [17] S. Ito, Y. Takahashi, Markov subshifts and realization of β-expansions, J. Math. Soc. Japan26 (1974) 33-55. Zbl0269.28006
- [18] A.N. Livšic, Certain properties of the homology of U-systems, Mat. Zametki10 (1971) 555-564, English Transl. in, Math. Notes10 (1971) 758-763. Zbl0227.58006MR293669
- [19] D. Maharam, Incompressible transformations, Fund. Math.56 (1964) 35-50. Zbl0133.00304MR169988
- [20] P.-A. Meyer, Probability and Potentials, Blaisdell Publishing Co, Ginn and Co, Waltham, MA, 1966. Zbl0138.10401MR205288
- [21] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar.11 (1960) 401-416. Zbl0099.28103
- [22] W. Parry, K. Schmidt, Natural coefficients and invariants for Markov-shifts, Invent. Math.76 (1) (1984) 15-32. Zbl0563.28008MR739621
- [23] K. Petersen, K. Schmidt, Symmetric Gibbs measures, Trans. Amer. Math. Soc.349 (1997) 2775-2811. Zbl0873.28008MR1422906
- [24] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar.8 (1957) 477-493. Zbl0079.08901MR97374
- [25] O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc.131 (6) (2003) 1751-1758. Zbl1009.37003MR1955261
- [26] K. Schmidt, Infinite invariant measures on the circle, in: Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975, Symposia Mathematica, vol. XXI, Academic Press, London, 1977, pp. 37-43. Zbl0375.28013MR476996
- [27] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. Zbl0819.11027MR1419320
- [28] M. Smorodinsky, β-automorphisms are Bernoulli shifts, Acta. Math. Acad. Sci. Hungar.24 (1973) 273-278. Zbl0268.28007
- [29] D. Vere-Jones, Ergodic properties of nonnegative matrices. I, Pacific J. Math.22 (1967) 361-386. Zbl0171.15503MR214145
- [30] P. Walters, Equilibrium states for β-transformations and related transformations, Math. Z.159 (1) (1978) 65-88. Zbl0364.28016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.