Ergodic decomposition of quasi-invariant probability measures

Gernot Greschonig; Klaus Schmidt

Colloquium Mathematicae (2000)

  • Volume: 84/85, Issue: 2, page 495-514
  • ISSN: 0010-1354

Abstract

top
The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.

How to cite

top

Greschonig, Gernot, and Schmidt, Klaus. "Ergodic decomposition of quasi-invariant probability measures." Colloquium Mathematicae 84/85.2 (2000): 495-514. <http://eudml.org/doc/210829>.

@article{Greschonig2000,
abstract = {The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.},
author = {Greschonig, Gernot, Schmidt, Klaus},
journal = {Colloquium Mathematicae},
keywords = {ergodic decomposition; nonsingular group actions; nonsingular equivalence relations; quasi-invariant measures; quasi-invariant measure},
language = {eng},
number = {2},
pages = {495-514},
title = {Ergodic decomposition of quasi-invariant probability measures},
url = {http://eudml.org/doc/210829},
volume = {84/85},
year = {2000},
}

TY - JOUR
AU - Greschonig, Gernot
AU - Schmidt, Klaus
TI - Ergodic decomposition of quasi-invariant probability measures
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 2
SP - 495
EP - 514
AB - The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.
LA - eng
KW - ergodic decomposition; nonsingular group actions; nonsingular equivalence relations; quasi-invariant measures; quasi-invariant measure
UR - http://eudml.org/doc/210829
ER -

References

top
  1. [1] P. Billingsley, Probability and Measure, Wiley, New York, 1979. Zbl0411.60001
  2. [2] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160. Zbl0134.12102
  3. [3] J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. Math. 28 (1978), 186-230. Zbl0392.28023
  4. [4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289-324. Zbl0369.22009
  5. [5] S. R. Foguel, Ergodic decomposition of a topological space, Israel J. Math. 7 (1969), 164-167. Zbl0179.08302
  6. [6] E. Hopf, On the ergodic theorem for positive linear operators, J. Reine Angew. Math. 205 (1960), 101-106. Zbl0103.33801
  7. [7] A. S. Kechris, Countable sections for locally compact groups, Ergodic Theory Dynam. Systems 12 (1992), 283-295. 
  8. [8] J. Kerstan and A. Wakolbinger, Ergodic decomposition of probability laws, Z. Wahrsch. Verw. Gebiete 56 (1981), 399-414. Zbl0444.60004
  9. [9] Yu. I. Kifer and S. A. Pirogov, On the decomposition of quasi-invariant measures into ergodic components, Uspekhi Mat. Nauk 27 (1972), no. 5, 239-240 (in Russian). Zbl0248.28014
  10. [10] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930. Zbl56.0085.01
  11. [11] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981. Zbl0449.28016
  12. [12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. Zbl0153.19101
  13. [13] R. R. Phelps, Lectures on Choquet's Theorem, van Nostrand Reinhold, New York, 1966. Zbl0135.36203
  14. [14] A. Ramsay, Virtual groups and group actions, Adv. Math. 6 (1971), 253-322. Zbl0216.14902
  15. [15] A. Ramsay, Subobjects of virtual groups, Pacific J. Math. 87 (1980), 389-454. Zbl0453.22005
  16. [16] K. Schmidt, Cocycles on Ergodic Transformation Groups, MacMillan (India), Delhi, 1977. 
  17. [17] K. Schmidt, A probabilistic proof of ergodic decomposition, Sankhyā Ser. A 40 (1978), 10-18. Zbl0412.60004
  18. [18] K. Schmidt, Unique ergodicity for quasi-invariant measures, Math. Z. 167 (1979), 168-172. Zbl0416.28013
  19. [19] H. Shimomura, Ergodic decomposition of quasi-invariant measures, Publ. RIMS Kyoto Univ. 14 (1978), 359-381. Zbl0391.60004
  20. [20] H. Shimomura, Remark to the paper 'Ergodic decomposition of quasi-invariant measures', ibid. 19 (1983), 203-205. Zbl0509.60008
  21. [21] H. Shimomura, Remark to the ergodic decomposition, ibid. 26 (1990), 861-865. Zbl0716.28005
  22. [22] M. L. Sturgeon, The ergodic decomposition of conservative Baire measures, Proc. Amer. Math. Soc. 44 (1974), 141-146. Zbl0285.28020
  23. [23] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. Zbl0192.14203
  24. [24] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401-485. Zbl0034.06102
  25. [25] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. Zbl0571.58015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.