Ergodic decomposition of quasi-invariant probability measures
Gernot Greschonig; Klaus Schmidt
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 2, page 495-514
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topGreschonig, Gernot, and Schmidt, Klaus. "Ergodic decomposition of quasi-invariant probability measures." Colloquium Mathematicae 84/85.2 (2000): 495-514. <http://eudml.org/doc/210829>.
@article{Greschonig2000,
abstract = {The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.},
author = {Greschonig, Gernot, Schmidt, Klaus},
journal = {Colloquium Mathematicae},
keywords = {ergodic decomposition; nonsingular group actions; nonsingular equivalence relations; quasi-invariant measures; quasi-invariant measure},
language = {eng},
number = {2},
pages = {495-514},
title = {Ergodic decomposition of quasi-invariant probability measures},
url = {http://eudml.org/doc/210829},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Greschonig, Gernot
AU - Schmidt, Klaus
TI - Ergodic decomposition of quasi-invariant probability measures
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 2
SP - 495
EP - 514
AB - The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.
LA - eng
KW - ergodic decomposition; nonsingular group actions; nonsingular equivalence relations; quasi-invariant measures; quasi-invariant measure
UR - http://eudml.org/doc/210829
ER -
References
top- [1] P. Billingsley, Probability and Measure, Wiley, New York, 1979. Zbl0411.60001
- [2] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160. Zbl0134.12102
- [3] J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. Math. 28 (1978), 186-230. Zbl0392.28023
- [4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289-324. Zbl0369.22009
- [5] S. R. Foguel, Ergodic decomposition of a topological space, Israel J. Math. 7 (1969), 164-167. Zbl0179.08302
- [6] E. Hopf, On the ergodic theorem for positive linear operators, J. Reine Angew. Math. 205 (1960), 101-106. Zbl0103.33801
- [7] A. S. Kechris, Countable sections for locally compact groups, Ergodic Theory Dynam. Systems 12 (1992), 283-295.
- [8] J. Kerstan and A. Wakolbinger, Ergodic decomposition of probability laws, Z. Wahrsch. Verw. Gebiete 56 (1981), 399-414. Zbl0444.60004
- [9] Yu. I. Kifer and S. A. Pirogov, On the decomposition of quasi-invariant measures into ergodic components, Uspekhi Mat. Nauk 27 (1972), no. 5, 239-240 (in Russian). Zbl0248.28014
- [10] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930. Zbl56.0085.01
- [11] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981. Zbl0449.28016
- [12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. Zbl0153.19101
- [13] R. R. Phelps, Lectures on Choquet's Theorem, van Nostrand Reinhold, New York, 1966. Zbl0135.36203
- [14] A. Ramsay, Virtual groups and group actions, Adv. Math. 6 (1971), 253-322. Zbl0216.14902
- [15] A. Ramsay, Subobjects of virtual groups, Pacific J. Math. 87 (1980), 389-454. Zbl0453.22005
- [16] K. Schmidt, Cocycles on Ergodic Transformation Groups, MacMillan (India), Delhi, 1977.
- [17] K. Schmidt, A probabilistic proof of ergodic decomposition, Sankhyā Ser. A 40 (1978), 10-18. Zbl0412.60004
- [18] K. Schmidt, Unique ergodicity for quasi-invariant measures, Math. Z. 167 (1979), 168-172. Zbl0416.28013
- [19] H. Shimomura, Ergodic decomposition of quasi-invariant measures, Publ. RIMS Kyoto Univ. 14 (1978), 359-381. Zbl0391.60004
- [20] H. Shimomura, Remark to the paper 'Ergodic decomposition of quasi-invariant measures', ibid. 19 (1983), 203-205. Zbl0509.60008
- [21] H. Shimomura, Remark to the ergodic decomposition, ibid. 26 (1990), 861-865. Zbl0716.28005
- [22] M. L. Sturgeon, The ergodic decomposition of conservative Baire measures, Proc. Amer. Math. Soc. 44 (1974), 141-146. Zbl0285.28020
- [23] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. Zbl0192.14203
- [24] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401-485. Zbl0034.06102
- [25] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. Zbl0571.58015
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.