Limiting behavior of a diffusion in an asymptotically stable environment
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 1, page 101-138
- ISSN: 0246-0203
Access Full Article
topHow to cite
topSingh, Arvind. "Limiting behavior of a diffusion in an asymptotically stable environment." Annales de l'I.H.P. Probabilités et statistiques 43.1 (2007): 101-138. <http://eudml.org/doc/77920>.
@article{Singh2007,
author = {Singh, Arvind},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random environment; stable process; iterated logarithm law},
language = {eng},
number = {1},
pages = {101-138},
publisher = {Elsevier},
title = {Limiting behavior of a diffusion in an asymptotically stable environment},
url = {http://eudml.org/doc/77920},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Singh, Arvind
TI - Limiting behavior of a diffusion in an asymptotically stable environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 1
SP - 101
EP - 138
LA - eng
KW - random environment; stable process; iterated logarithm law
UR - http://eudml.org/doc/77920
ER -
References
top- [1] J. Bertoin, Lévy processes, Cambridge Tracts in Math., vol. 121, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
- [2] J. Bertoin, On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London Math. Soc.28 (5) (1996) 514-520. Zbl0863.60068MR1396154
- [3] J. Bertoin, R.A. Doney, On conditioning a random walk to stay nonnegative, Ann. Probab.22 (4) (1994) 2152-2167. Zbl0834.60079MR1331218
- [4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia Math. Appl., vol. 27, Cambridge University Press, Cambridge, 1989. Zbl0667.26003MR1015093
- [5] A.A. Borovkov, Large deviations probabilities for random walks in the absence of finite expectations of jumps, Probab. Theory Related Fields125 (3) (2003) 421-446. Zbl1028.60021MR1967023
- [6] Th. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab.14 (4) (1986) 1206-1218. Zbl0608.60072MR866343
- [7] D. Cheliotis, One-dimensional diffusion in an asymmetric random environment, Ann. Inst. H. Poincaré Probab. Statist., in press, available at, http://www.math.toronto.edu/dimitris. Zbl1105.60077MR2269235
- [8] R.A. Doney, Conditional limit theorems for asymptotically stable random walks, Z. Wahrsch. Verw. Gebiete70 (3) (1985) 351-360. Zbl0573.60063MR803677
- [9] P. Erdös, On the law of the iterated logarithm, Ann. of Math. (2)43 (1942) 419-436. Zbl0063.01264MR6630
- [10] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, John Wiley & Sons Inc., New York, 1966. Zbl0138.10207MR210154
- [11] C.C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law, Sankhyā Ser. A30 (1968) 253-258. Zbl0182.22903MR240854
- [12] Y. Hu, Z. Shi, The limits of Sinai's simple random walk in random environment, Ann. Probab.26 (4) (1998) 1477-1521. Zbl0936.60088MR1675031
- [13] K. Itô, H.P. McKean, Diffusion Processes and their Sample Paths, Grundlehren Math. Wiss., Band 125, Academic Press Inc., New York, 1965. Zbl0285.60063MR199891
- [14] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., vol. 288, Springer-Verlag, Berlin, 1987. Zbl0635.60021MR959133
- [15] K. Kawazu, Y. Tamura, H. Tanaka, Localization of diffusion processes in one-dimensional random environment, J. Math. Soc. Japan44 (3) (1992) 515-550. Zbl0761.60072MR1167381
- [16] S. Kochen, Ch. Stone, A note on the Borel–Cantelli lemma, Illinois J. Math.8 (1964) 248-251. Zbl0139.35401
- [17] M.R. Pistorius, On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum, J. Theoret. Probab.17 (1) (2004) 183-220. Zbl1049.60042MR2054585
- [18] B.A. Rogozin, Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Veroyatnost. i Primenen.16 (1971) 539-613. Zbl0269.60053MR290473
- [19] S. Schumacher, Diffusions with random coefficients, in: Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984), Contemp. Math., vol. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 351-356. Zbl0572.60053MR814724
- [20] Z. Shi, Sinai's walk via stochastic calculus, Survey paper, available at, http://www.proba.jussieu.fr/pageperso/zhan/preprints.html. MR2226845
- [21] A.V. Skorohod, Limit theorems for stochastic processes with independent increments, Teor. Veroyatnost. i Primenen.2 (1957) 145-177. Zbl0097.13001MR94842
- [22] V.M. Zolotarev, One-Dimensional Stable Distributions, Transl. Math. Monogr., vol. 65, Amer. Math. Soc., Providence, RI, 1986, (Translated from the Russian by H.H. McFaden, translation edited by Ben Silver). Zbl0589.60015MR854867
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.