One-dimensional diffusion in an asymmetric random environment

Dimitrios Cheliotis

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 6, page 715-726
  • ISSN: 0246-0203

How to cite

top

Cheliotis, Dimitrios. "One-dimensional diffusion in an asymmetric random environment." Annales de l'I.H.P. Probabilités et statistiques 42.6 (2006): 715-726. <http://eudml.org/doc/77916>.

@article{Cheliotis2006,
author = {Cheliotis, Dimitrios},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {renewal theorem; stable process},
language = {eng},
number = {6},
pages = {715-726},
publisher = {Elsevier},
title = {One-dimensional diffusion in an asymmetric random environment},
url = {http://eudml.org/doc/77916},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Cheliotis, Dimitrios
TI - One-dimensional diffusion in an asymmetric random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 6
SP - 715
EP - 726
LA - eng
KW - renewal theorem; stable process
UR - http://eudml.org/doc/77916
ER -

References

top
  1. [1] F. Avram, A. Kyprianou, M. Pistorius, Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options, Ann. Appl. Probab.14 (1) (2004) 215-238. Zbl1042.60023MR2023021
  2. [2] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
  3. [3] J. Bertoin, On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London Math. Soc.28 (5) (1996) 514-520. Zbl0863.60068MR1396154
  4. [4] J. Bertoin, Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval, Ann. Appl. Probab.7 (1997) 156-169. Zbl0880.60077MR1428754
  5. [5] T. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab.14 (4) (1986) 1206-1218. Zbl0608.60072MR866343
  6. [6] R. Durrett, Probability: Theory and Examples, Wadsworth Pub. Co., 1996. Zbl0709.60002MR1609153
  7. [7] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, vol. 1, McGraw-Hill Book Company, Inc., New York, 1953, Based, in part, on notes left by Harry Bateman. Zbl0051.30303MR58756
  8. [8] A.O. Golosov, Limit distributions for random walks in random environments, Soviet Math. Dokl.28 (1983) 18-22. 
  9. [9] P. Greenwood, J. Pitman, Fluctuation identities for Lévy processes and splitting at the maximum, Adv. Appl. Probab.12 (1980) 893-902. Zbl0443.60037MR588409
  10. [10] H. Kesten, The limit distribution of Sinai's random walk in random environment, Phys. A138 (1–2) (1986) 299-309. Zbl0666.60065MR865247
  11. [11] M. Pistorius, On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum, J. Theoret. Probab.17 (1) (2004) 183-220. Zbl1049.60042MR2054585
  12. [12] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, vol. 2, John Wiley and Sons, Inc., New York, 1987. Zbl0627.60001MR921238
  13. [13] S. Schumacher, Diffusions with random coefficients, in: Particle Systems, Random Media and Large Deviations, Contemp. Math., vol. 41, Amer. Math. Soc., Providence, RI, 1985. Zbl0572.60053MR814724
  14. [14] S. Schumacher, Diffusions with Random Coefficients, Ph.D. thesis, UCLA, 1984. Zbl0572.60053MR814724
  15. [15] P. Seignourel, Discrete schemes for processes in random media, Probab. Theory Related Fields118 (3) (2000) 293-322. Zbl0968.60100MR1800534
  16. [16] Z. Shi, Sinai's walk via stochastic calculus, in: Comets F., Pardoux E. (Eds.), Milieux Aléatoires, Panoramas et Synthèses, vol. 12, Société Mathématique de France, 2001. Zbl1031.60088MR2238823
  17. [17] Y. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Theory Probab. Appl.27 (1982) 256-268. Zbl0505.60086MR657919
  18. [18] H. Tanaka, Limit distributions for one-dimensional diffusion processes in self-similar random environments, in: Hydrodynamic Behavior and Interacting Particle Systems, IMA Vol. Math. Appl., vol. 9, Springer, 1987, pp. 189-210. Zbl0653.60072MR914995
  19. [19] H. Tanaka, Limit distribution for 1-dimensional diffusion in a reflected Brownian medium, in: Séminaire de Probabilités, XXI, Lecture Notes in Math., vol. 1247, Springer, 1987, pp. 246-261. Zbl0616.60074MR941988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.