On estimating the memory for finitarily markovian processes
Gusztáv Morvai; Benjamin Weiss
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 1, page 15-30
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] D.H. Bailey, Sequential schemes for classifying and predicting ergodic processes, Ph.D. thesis, Stanford University, 1976.
- [2] P. Bühlmann, A.J. Wyner, Variable-length Markov chains, Ann. Statist.27 (1999) 480-513. Zbl0983.62048MR1714720
- [3] I. Csiszár, Large-scale typicality of Markov sample paths and consistency of MDL order estimators, IEEE Trans. Inform. Theory48 (2002) 1616-1628. Zbl1060.62092MR1909476
- [4] I. Csiszár, P. Shields, The consistency of the BIC Markov order estimator, Ann. Statist.28 (2000) 1601-1619. Zbl1105.62311MR1835033
- [5] I. Csiszár, Zs. Talata, Context tree estimation for not necessarily finite memory processes via BIC and MDL, IEEE Trans. Inform. Theory, in press. Zbl1284.94027MR2238067
- [6] A. Dembo, Y. Peres, A topological criterion for hypothesis testing, Ann. Statist.22 (1994) 106-117. Zbl0818.62010MR1272078
- [7] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. Zbl0853.68150MR1383093
- [8] L. Györfi, G. Morvai, S. Yakowitz, Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory44 (1998) 886-892. Zbl0899.62122MR1607704
- [9] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc.58 (1963) 13-30. Zbl0127.10602MR144363
- [10] S. Kalikow, Y. Katznelson, B. Weiss, Finitarily deterministic generators for zero entropy systems, Israel J. Math.79 (1992) 33-45. Zbl0768.60074MR1195252
- [11] G. Morvai, Guessing the output of a stationary binary time series, in: Haitovsky Y., Lerche H.R., Ritov Y. (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. Zbl05280104MR2017826
- [12] G. Morvai, S. Yakowitz, L. Györfi, Nonparametric inference for ergodic, stationary time series, Ann. Statist.24 (1996) 370-379. Zbl0855.62076MR1389896
- [13] G. Morvai, B. Weiss, Forecasting for stationary binary time series, Acta Appl. Math.79 (2003) 25-34. Zbl1030.62076MR2021874
- [14] G. Morvai, B. Weiss, Intermittent estimation of stationary time series, Test13 (2004) 525-542. Zbl1082.62073MR2154012
- [15] G. Morvai, B. Weiss, Prediction for discrete time series, Probab. Theory Related Fields132 (2005) 1-12. Zbl1061.62148MR2136864
- [16] G. Morvai, B. Weiss, Order estimation of Markov chains, IEEE Trans. Inform. Theory51 (2005) 1496-1497. Zbl1309.62144MR2241507
- [17] G. Morvai, B. Weiss, Limitations on intermittent forecasting, Statist. Probab. Lett.72 (2005) 285-290. Zbl1066.62090MR2153125
- [18] G. Morvai, B. Weiss, On classifying processes, Bernoulli11 (2005) 523-532. Zbl1073.62077MR2146893
- [19] G. Morvai, B. Weiss, Inferring the conditional mean, Theory Stochastic Process.11 (1–2) (2005) 112-120. Zbl1164.62382
- [20] A. Nobel, Limits to classification and regression estimation from ergodic processes, Ann. Statist.27 (1999) 262-273. Zbl0933.62033MR1701110
- [21] D.S. Ornstein, Guessing the next output of a stationary process, Israel J. Math.30 (1978) 292-296. Zbl0386.60032MR508271
- [22] D.S. Ornstein, B. Weiss, How sampling reveals a process, Ann. Probab.18 (1990) 905-930. Zbl0709.60036MR1062052
- [23] B.Ya. Ryabko, Prediction of random sequences and universal coding, Problems Inform. Trans.24 (April–June 1988) 87-96. Zbl0666.94009
- [24] P.C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math., vol. 13, American Mathematical Society, Providence, RI, 1996. Zbl0879.28031MR1400225