On estimating the memory for finitarily markovian processes

Gusztáv Morvai; Benjamin Weiss

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 1, page 15-30
  • ISSN: 0246-0203

How to cite

top

Morvai, Gusztáv, and Weiss, Benjamin. "On estimating the memory for finitarily markovian processes." Annales de l'I.H.P. Probabilités et statistiques 43.1 (2007): 15-30. <http://eudml.org/doc/77921>.

@article{Morvai2007,
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stationary ergodic processes; finite order Markov chains},
language = {eng},
number = {1},
pages = {15-30},
publisher = {Elsevier},
title = {On estimating the memory for finitarily markovian processes},
url = {http://eudml.org/doc/77921},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - On estimating the memory for finitarily markovian processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 1
SP - 15
EP - 30
LA - eng
KW - stationary ergodic processes; finite order Markov chains
UR - http://eudml.org/doc/77921
ER -

References

top
  1. [1] D.H. Bailey, Sequential schemes for classifying and predicting ergodic processes, Ph.D. thesis, Stanford University, 1976. 
  2. [2] P. Bühlmann, A.J. Wyner, Variable-length Markov chains, Ann. Statist.27 (1999) 480-513. Zbl0983.62048MR1714720
  3. [3] I. Csiszár, Large-scale typicality of Markov sample paths and consistency of MDL order estimators, IEEE Trans. Inform. Theory48 (2002) 1616-1628. Zbl1060.62092MR1909476
  4. [4] I. Csiszár, P. Shields, The consistency of the BIC Markov order estimator, Ann. Statist.28 (2000) 1601-1619. Zbl1105.62311MR1835033
  5. [5] I. Csiszár, Zs. Talata, Context tree estimation for not necessarily finite memory processes via BIC and MDL, IEEE Trans. Inform. Theory, in press. Zbl1284.94027MR2238067
  6. [6] A. Dembo, Y. Peres, A topological criterion for hypothesis testing, Ann. Statist.22 (1994) 106-117. Zbl0818.62010MR1272078
  7. [7] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. Zbl0853.68150MR1383093
  8. [8] L. Györfi, G. Morvai, S. Yakowitz, Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory44 (1998) 886-892. Zbl0899.62122MR1607704
  9. [9] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc.58 (1963) 13-30. Zbl0127.10602MR144363
  10. [10] S. Kalikow, Y. Katznelson, B. Weiss, Finitarily deterministic generators for zero entropy systems, Israel J. Math.79 (1992) 33-45. Zbl0768.60074MR1195252
  11. [11] G. Morvai, Guessing the output of a stationary binary time series, in: Haitovsky Y., Lerche H.R., Ritov Y. (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. Zbl05280104MR2017826
  12. [12] G. Morvai, S. Yakowitz, L. Györfi, Nonparametric inference for ergodic, stationary time series, Ann. Statist.24 (1996) 370-379. Zbl0855.62076MR1389896
  13. [13] G. Morvai, B. Weiss, Forecasting for stationary binary time series, Acta Appl. Math.79 (2003) 25-34. Zbl1030.62076MR2021874
  14. [14] G. Morvai, B. Weiss, Intermittent estimation of stationary time series, Test13 (2004) 525-542. Zbl1082.62073MR2154012
  15. [15] G. Morvai, B. Weiss, Prediction for discrete time series, Probab. Theory Related Fields132 (2005) 1-12. Zbl1061.62148MR2136864
  16. [16] G. Morvai, B. Weiss, Order estimation of Markov chains, IEEE Trans. Inform. Theory51 (2005) 1496-1497. Zbl1309.62144MR2241507
  17. [17] G. Morvai, B. Weiss, Limitations on intermittent forecasting, Statist. Probab. Lett.72 (2005) 285-290. Zbl1066.62090MR2153125
  18. [18] G. Morvai, B. Weiss, On classifying processes, Bernoulli11 (2005) 523-532. Zbl1073.62077MR2146893
  19. [19] G. Morvai, B. Weiss, Inferring the conditional mean, Theory Stochastic Process.11 (1–2) (2005) 112-120. Zbl1164.62382
  20. [20] A. Nobel, Limits to classification and regression estimation from ergodic processes, Ann. Statist.27 (1999) 262-273. Zbl0933.62033MR1701110
  21. [21] D.S. Ornstein, Guessing the next output of a stationary process, Israel J. Math.30 (1978) 292-296. Zbl0386.60032MR508271
  22. [22] D.S. Ornstein, B. Weiss, How sampling reveals a process, Ann. Probab.18 (1990) 905-930. Zbl0709.60036MR1062052
  23. [23] B.Ya. Ryabko, Prediction of random sequences and universal coding, Problems Inform. Trans.24 (April–June 1988) 87-96. Zbl0666.94009
  24. [24] P.C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math., vol. 13, American Mathematical Society, Providence, RI, 1996. Zbl0879.28031MR1400225

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.