Intermittent estimation for finite alphabet finitarily Markovian processes with exponential tails
Gusztáv Morvai; Benjamin Weiss
Kybernetika (2021)
- Volume: 57, Issue: 4, page 628-646
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMorvai, Gusztáv, and Weiss, Benjamin. "Intermittent estimation for finite alphabet finitarily Markovian processes with exponential tails." Kybernetika 57.4 (2021): 628-646. <http://eudml.org/doc/297569>.
@article{Morvai2021,
abstract = {We give some estimation schemes for the conditional distribution and conditional expectation of the the next output following the observation of the first $n$ outputs of a stationary process where the random variables may take finitely many possible values. Our schemes are universal in the class of finitarily Markovian processes that have an exponential rate for the tail of the look back time distribution. In addition explicit rates are given. A necessary restriction is that the scheme proposes an estimate only at certain stopping times, but these have density one so that one rarely fails to give an estimate.},
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Kybernetika},
keywords = {nonparametric estimation; stationary processes},
language = {eng},
number = {4},
pages = {628-646},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Intermittent estimation for finite alphabet finitarily Markovian processes with exponential tails},
url = {http://eudml.org/doc/297569},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Intermittent estimation for finite alphabet finitarily Markovian processes with exponential tails
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 628
EP - 646
AB - We give some estimation schemes for the conditional distribution and conditional expectation of the the next output following the observation of the first $n$ outputs of a stationary process where the random variables may take finitely many possible values. Our schemes are universal in the class of finitarily Markovian processes that have an exponential rate for the tail of the look back time distribution. In addition explicit rates are given. A necessary restriction is that the scheme proposes an estimate only at certain stopping times, but these have density one so that one rarely fails to give an estimate.
LA - eng
KW - nonparametric estimation; stationary processes
UR - http://eudml.org/doc/297569
ER -
References
top- Algoet, P., , IEEE Trans. Inform. Theory 40 (1994), 609-633. DOI
- Algoet, P., , IEEE Trans. Inform. Theory 45 (1999), 1165-1185. Zbl0959.62078DOI
- Bailey, D. H., Sequential Schemes for Classifying and Predicting Ergodic Processes., Ph.D. Thesis, Stanford University, 1976.
- Csiszár, I., Talata, Zs., , IEEE Trans. Inform. Theory 52 (2006), 3, 1007-1016. DOI
- Györfi, L., Morvai, G., Yakowitz, S., , IEEE Trans. Inform. Theory 44 (1998), 886-892. Zbl0899.62122MR1607704DOI
- Hoeffding, W., 10.1080/01621459.1963.10500830, J. Amer. Statist. Assoc. 58 (1963), 13-30. DOI10.1080/01621459.1963.10500830
- Kalikow, S., Katznelson, Y., Weiss, B., , Israel J. Math. 79 (1992), 33-45. DOI
- Maker, Ph. T., The ergodic theorem for a sequence of functions., Duke Math. J. 6 (1940), 27-30.
- Morvai, G., Guessing the output of a stationary binary time series., In: Foundations of Statistical Inference (Y. Haitovsky, H. R.Lerche, and Y. Ritov, eds.), Physika-Verlag, pp. 207-215, 2003.
- Morvai, G., Yakowitz, S., Algoet, P., , IEEE Trans. Inform. Theory 43 (1997), 483-498. DOI
- Morvai, G., Weiss, B., , Acta Appl. Math. 79 (2003), 25-34. DOI
- Morvai, G., Weiss, B., , Test 13 (2004), 525-542. DOI
- Morvai, G., Weiss, B., Inferring the conditional mean., Theory Stochast. Process. 11 (2005), 1-2, 112-120. Zbl1164.62382
- Morvai, G., Weiss, B., , Probab. Theory Related Fields 132 (2005), 1-12. DOI
- Morvai, G., Weiss, B., , Statist. Probab. Lett. 72 (2005), 285-290. DOI
- Morvai, G., Weiss, B., , Bernoulli 11 (2005), 523-532. DOI
- Morvai, G., Weiss, B., , IEEE Trans. Inform. Theory 51 (2005), 1496-1497. DOI
- Morvai, G., Weiss, B., , Ann. I. H. Poincaré Probab. Statist. 41 (2005), 859-870. DOI
- Morvai, G., Weiss, B., , Ann. I. H. Poincaré PR 43 (2007), 15-30. DOI
- Morvai, G., Weiss, B., , Stoch. Dyn. 7 (2007), 4, 417-437. Zbl1255.62228DOI
- Morvai, G., Weiss, B., , IEEE Trans. Inform. Theory 54 (2008), 8, 3804-3807. Zbl1329.60095DOI
- Morvai, G., Weiss, B., , Annals Appl. Probab. 18 (2008), 5, 1970-1992. Zbl1158.62053DOI
- Morvai, G., Weiss, B., Estimating the residual waiting time for binary stationary time series., Proc. ITW2009, Volos 2009, pp. 67-70.
- Morvai, G., Weiss, B., A note on prediction for discrete time series., Kybernetika 48 (2012), 4, 809-823.
- Morvai, G., Weiss, B., , IEEE Trans. Inform. Theory 59 (2013), 6873-6879. DOI
- Morvai, G., Weiss, B., , Kybernetika 50 (2014), 869-882. Zbl1308.62067DOI
- Morvai, G., Weiss, B., , Kybernetika 52 (2016), 348-358. DOI
- Morvai, G., Weiss, B., , Kybernetika 56, (2020), 4, 601-616. DOI
- Morvai, G., Weiss, B., 10.1214/20-PS345, Probab. Surveys 18 (2021), 77-131. DOI10.1214/20-PS345
- Morvai, G., Weiss, B., , ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021), 1643-1667. DOI
- Ryabko, B. Ya., , Problems Inform. Trans. 24 (1988), 87-96. Zbl0666.94009DOI
- Ryabko, D., Asymptotic Nonparametric Statistical Analysis of Stationary Time Series., Springer, Cham 2019.
- Shields, P. C., The Ergodic Theory of Discrete Sample Paths., In: Graduate Studies in Mathematics. American Mathematical Society 13, Providence 1996. Zbl0879.28031
- Suzuki, J., , Systems Computers Japan 34 (2003), 6, 1-11. DOI
- Takahashi, H., , IEEE Trans. Inform. Theory 57 (2011), 6995-6999. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.