On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation

Aldo Pratelli

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 1, page 1-13
  • ISSN: 0246-0203

How to cite

top

Pratelli, Aldo. "On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation." Annales de l'I.H.P. Probabilités et statistiques 43.1 (2007): 1-13. <http://eudml.org/doc/77922>.

@article{Pratelli2007,
author = {Pratelli, Aldo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Monge problem; optimal transport},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Elsevier},
title = {On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation},
url = {http://eudml.org/doc/77922},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Pratelli, Aldo
TI - On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 1
SP - 1
EP - 13
LA - eng
KW - Monge problem; optimal transport
UR - http://eudml.org/doc/77922
ER -

References

top
  1. [1] L. Ambrosio, Lecture notes on optimal transport problems, in: Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., vol. 1812, Springer, 2003, pp. 1-52. Zbl1047.35001MR2011032
  2. [2] L. Ambrosio, A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, in: Optimal Transportation and Applications, Lecture Notes in Math., vol. 1813, Springer, 2003, pp. 123-160. Zbl1065.49026MR2006307
  3. [3] L. Caffarelli, M. Feldman, R.J. McCann, Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc.15 (2002) 1-26. Zbl1053.49032MR1862796
  4. [4] L.C. Evans, W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc.137 (653) (1999). Zbl0920.49004
  5. [5] W. Gangbo, The Monge mass transfer problem and its applications, Contemp. Math.226 (1999) 79-104. Zbl0930.49025MR1660743
  6. [6] L.V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk SSSR37 (1942) 227-229. 
  7. [7] L.V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk3 (1948) 225-226. 
  8. [8] G. Monge, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris, 1781. 
  9. [9] J.C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc.24 (1970) 419-423. Zbl0187.00902MR260961
  10. [10] A. Pratelli, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2003. Available on, http://cvgmt.sns.it/. 
  11. [11] S.T. Rachev, L. Rüschendorf, Mass Transportation Problems, Springer-Verlag, 1998. Zbl0990.60500
  12. [12] H.L. Royden, Real Analysis, second ed., Macmillan, 1968. Zbl0197.03501
  13. [13] N.S. Trudinger, X.J. Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations13 (2001) 19-31. Zbl1010.49030MR1854255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.