Displaying similar documents to “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”

On optimal matching measures for matching problems related to the Euclidean distance

José Manuel Mazón, Julio Daniel Rossi, Julián Toledo (2014)

Mathematica Bohemica

Similarity:

We deal with an optimal matching problem, that is, we want to transport two measures to a given place (the target set) where they will match, minimizing the total transport cost that in our case is given by the sum of two different multiples of the Euclidean distance that each measure is transported. We show that such a problem has a solution with an optimal matching measure supported in the target set. This result can be proved by an approximation procedure using a p -Laplacian system....

On the hessian of the optimal transport potential

Stefán Ingi Valdimarsson (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We study the optimal solution of the Monge-Kantorovich mass transport problem between measures whose density functions are convolution with a gaussian measure and a log-concave perturbation of a different gaussian measure. Under certain conditions we prove bounds for the Hessian of the optimal transport potential. This extends and generalises a result of Caffarelli. We also show how this result fits into the scheme of Barthe to prove Brascamp-Lieb inequalities and thus prove a new generalised...

Transport problems and disintegration maps

Luca Granieri, Francesco Maddalena (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds...

Synchronized traffic plans and stability of optima

Marc Bernot, Alessio Figalli (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The irrigation problem is the problem of finding an efficient way to transport a measure μ onto a measure μ. By efficient, we mean that a structure that achieves the transport (which, following [Bernot, Caselles and Morel, (2005) 417–451], we call traffic plan) is better if it carries the mass in a grouped way rather than in a separate way. This is formalized by considering costs functionals that favorize this property. The aim of this paper is to introduce a dynamical...

A variational model for urban planning with traffic congestion

Guillaume Carlier, Filippo Santambrogio (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We propose a variational model to describe the optimal distributions of residents and services in an urban area. The functional to be minimized involves an overall transportation cost taking into account congestion effects and two aditional terms which penalize concentration of residents and dispersion of services. We study regularity properties of the minimizers and treat in details some examples.

A general duality theorem for the Monge-Kantorovich transport problem

Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)

Studia Mathematica

Similarity:

The duality theory for the Monge-Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be Polish and equipped with Borel probability measures μ and ν. The transport cost function c: X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial...