Fluctuations of the front in a stochastic combustion model

Francis Comets; Jeremy Quastel; Alejandro F. Ramírez

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 2, page 147-162
  • ISSN: 0246-0203

How to cite

top

Comets, Francis, Quastel, Jeremy, and Ramírez, Alejandro F.. "Fluctuations of the front in a stochastic combustion model." Annales de l'I.H.P. Probabilités et statistiques 43.2 (2007): 147-162. <http://eudml.org/doc/77928>.

@article{Comets2007,
author = {Comets, Francis, Quastel, Jeremy, Ramírez, Alejandro F.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {regeneration times; interacting particle systems; random walks in random environment},
language = {eng},
number = {2},
pages = {147-162},
publisher = {Elsevier},
title = {Fluctuations of the front in a stochastic combustion model},
url = {http://eudml.org/doc/77928},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Comets, Francis
AU - Quastel, Jeremy
AU - Ramírez, Alejandro F.
TI - Fluctuations of the front in a stochastic combustion model
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 2
SP - 147
EP - 162
LA - eng
KW - regeneration times; interacting particle systems; random walks in random environment
UR - http://eudml.org/doc/77928
ER -

References

top
  1. [1] O. Alves, F. Machado, S. Popov, Phase transition for the frog model, Electron. J. Probab.7 (2) (2002). Zbl1012.60081MR1943889
  2. [2] O. Alves, F. Machado, S. Popov, The shape theorem for the frog model, Ann. Appl. Probab.12 (2) (2002) 533-546. Zbl1013.60081MR1910638
  3. [3] O. Alves, F. Machado, S. Popov, K. Ravishankar, The shape theorem for the frog model with random initial configuration, Markov Process. Related Fields7 (4) (2001) 525-539. Zbl0991.60097MR1893139
  4. [4] O. Alves, C.E. Ferreira, F.P. Machado, Estimates for the spreading velocity of an epidemic model, Math. Comput. Simulation64 (6) (2004) 609-616. Zbl1034.92028MR2042117
  5. [5] C. Boldrighini, A. Pellegrinotti, E. Presutti, Ya.G. Sinai, M.R. Soloveichik, Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics, Commun. Math. Phys.101 (1985) 363-382. MR815190
  6. [6] F. Comets, O. Zeitouni, A law of large numbers for random walks in random mixing environments, Ann. Probab.32 (1B) (2004) 880-914. Zbl1078.60089MR2039946
  7. [7] P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., vol. 28, Springer-Verlag, New York, 1979. Zbl0403.92004MR527914
  8. [8] L.R. Fontes, F.P. Machado, A. Sarkar, The critical probability for the frog model is not a monotonic function of the graph, J. Appl. Probab.41 (1) (2004) 292-298. Zbl1051.60095MR2036292
  9. [9] H. Kesten, A renewal theorem for random walk in a random environment, Proc. Sympos. Pure Math.31 (1977) 67-77. Zbl0361.60030MR458648
  10. [10] V. Petrov, Sums of Independent Random Variables, Springer-Verlag, 1975. Zbl0322.60042MR388499
  11. [11] S. Popov, Frogs in random environment, J. Statist. Phys.102 (1–2) (2001) 191-201. Zbl0972.60101
  12. [12] S. Popov, Frogs and some other interacting random walks models, Discrete Math. Theor. Comput. Sci. Proc., volume on Discrete Random Walks (2003), pp. 277–288 (electronic). Zbl1034.60089
  13. [13] A.F. Ramirez, V. Sidoravicius, Asymptotic behavior of a stochastic growth process associated with a system of interacting branching random walks, C. R. Math. Acad. Sci. Paris, Ser. I335 (10) (2002) 821-826. Zbl1018.60099MR1947707
  14. [14] A.F. Ramirez, V. Sidoravicius, Asymptotic behavior of a stochastic combustion growth process, J. Eur. Math. Soc.6 (3) (2004) 293-334. Zbl1049.60089MR2060478
  15. [15] V. Sidoravicius, L. Triolo, M.E. Vares, Mixing properties for mechanical motion of a charged particle in a random medium, Commun. Math. Phys.219 (2) (2001) 323-355. Zbl1041.82012MR1833806
  16. [16] A.S. Sznitman, Slowdown estimates and central limit theorem for random walk in random environment, J. Eur. Math. Soc.2 (2000) 93-143. Zbl0976.60097MR1763302
  17. [17] A.S. Sznitman, M. Zerner, A law of large numbers for random walks in random environment, Ann. Probab.27 (4) (1999) 1851-1869. Zbl0965.60100MR1742891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.