Lower deviation probabilities for supercritical Galton–Watson processes

Klaus Fleischmann; Vitali Wachtel

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 2, page 233-255
  • ISSN: 0246-0203

How to cite

top

Fleischmann, Klaus, and Wachtel, Vitali. "Lower deviation probabilities for supercritical Galton–Watson processes." Annales de l'I.H.P. Probabilités et statistiques 43.2 (2007): 233-255. <http://eudml.org/doc/77933>.

@article{Fleischmann2007,
author = {Fleischmann, Klaus, Wachtel, Vitali},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {local limit theorem; large deviation; Cramér transform; concentration function; Schröder equation; Böttcher equation},
language = {eng},
number = {2},
pages = {233-255},
publisher = {Elsevier},
title = {Lower deviation probabilities for supercritical Galton–Watson processes},
url = {http://eudml.org/doc/77933},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Fleischmann, Klaus
AU - Wachtel, Vitali
TI - Lower deviation probabilities for supercritical Galton–Watson processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 2
SP - 233
EP - 255
LA - eng
KW - local limit theorem; large deviation; Cramér transform; concentration function; Schröder equation; Böttcher equation
UR - http://eudml.org/doc/77933
ER -

References

top
  1. [1] A. Asmussen, H. Hering, Branching Processes, Progress in Probab. and Statistics, vol. 3, Birkhäuser Boston Inc., Boston, MA, 1983. Zbl0516.60095MR701538
  2. [2] K.B. Athreya, P.E. Ney, The local limit theorem and some related aspects of supercritical branching processes, Trans. Amer. Math. Soc.152 (2) (1970) 233-251. Zbl0214.16203MR268971
  3. [3] J.D. Biggins, N.H. Bingham, Near-constancy phenomena in branching processes, Math. Proc. Cambridge Philos. Soc.110 (3) (1991) 545-558. Zbl0749.60077MR1120488
  4. [4] J.D. Biggins, N.H. Bingham, Large deviations in the supercritical branching process, Adv. Appl. Probab.25 (4) (1993) 757-772. Zbl0796.60090MR1241927
  5. [5] N.H. Bingham, On the limit of a supercritical branching process, J. Appl. Probab.25A (1988) 215-228. Zbl0669.60078MR974583
  6. [6] S. Dubuc, La densite de la loi-limite d'un processus en cascade expansif, Z. Wahrsch. Verw. Gebiete19 (1971) 281-290. Zbl0215.25603MR300353
  7. [7] S. Dubuc, Etude theorique et numerique de la fonction de Karlin–McGregor, J. Analyse Math.42 (1982) 15-37. Zbl0545.65084
  8. [8] S. Dubuc, E. Seneta, The local limit theorem for the Galton–Watson process, Ann. Probab.4 (1976) 490-496. Zbl0332.60059
  9. [9] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, second ed., John Wiley and Sons, New York, 1971. Zbl0219.60003MR270403
  10. [10] K. Fleischmann, V. Wachtel, Lower deviation probabilities for supercritical Galton–Watson processes, WIAS Berlin, Preprint No. 1025 of April 28, 2005, http://www.wias-berlin.de/publications/preprints/1025/. 
  11. [11] K. Fleischmann, V. Wachtel, Large deviations for sums defined on a Galton–Watson process, WIAS Berlin, Preprint No. 1135 of May 29, 2006. Zbl1141.60048
  12. [12] R. Höpfner, Local limit theorems for non-critical Galton–Watson processes with or without immigration, J. Appl. Probab.19 (1982) 262-271. Zbl0483.60081
  13. [13] M. Kuczma, Functional Equations in a Single Variable, PWN, Warszaw, 1968. Zbl0196.16403MR228862
  14. [14] P.E. Ney, A.N. Vidyashankar, Local limit theory and large deviations for supercritical branching processes, Ann. Appl. Probab.14 (2004) 1135-1166. Zbl1084.60542MR2071418
  15. [15] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975. Zbl0322.60042MR388499
  16. [16] E. Seneta, Regularly Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin, 1976. Zbl0324.26002MR453936

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.