On the left tail asymptotics for the limit law of supercritical Galton–Watson processes in the Böttcher case
Klaus Fleischmann; Vitali Wachtel
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 1, page 201-225
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. T. Barlow and E. A. Perkins. Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields 79 (1988) 543–623. Zbl0635.60090MR966175
- [2] J. D. Biggins. The growth of iterates of multivariate generating functions. Trans. Amer. Math. Soc. 360 (2008) 4305–4334. Zbl1158.39017MR2395174
- [3] J. D. Biggins and N. H. Bingham. Near-constancy phenomena in branching processes. Math. Proc. Cambridge Philos. Soc. 110 (1991) 545–558. Zbl0749.60077MR1120488
- [4] J. D. Biggins and N. H. Bingham. Large deviations in the supercritical branching process. Adv. Appl. Probab. 25 (1993) 757–772. Zbl0796.60090MR1241927
- [5] N. H. Bingham. Continuous branching processes and spectral positivity. Stochastic Process. Appl. 4 (1976) 217–242. Zbl0338.60051MR410961
- [6] N. H. Bingham. On the limit of a supercritical branching process. J. Appl. Probab. 25A (1988) 215–228. Zbl0669.60078MR974583
- [7] N. H. Bingham and R. A. Doney. Asymptotic properties of supercritical branching processes. I. The Galton–Watson processes. Adv. Appl. Probab. 6 (1974) 711–731. Zbl0297.60044MR362525
- [8] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, 1987. Zbl0617.26001MR898871
- [9] M. S. Dubuc. La densite de la loi-limite d’un processus en cascade expansif. Z. Wahrsch. Verw. Gebiete 19 (1971) 281–290. Zbl0215.25603MR300353
- [10] W. Feller. An Introduction to Probability Theory and Its Applications, volume II, 2nd edition. Wiley, New York, 1971. Zbl0219.60003MR270403
- [11] P. Flajolet and A. M. Odlyzko. Limit distributions for coefficients of iterates of polynomials with applications to combinatorial enumerations. Math. Proc. Cambridge Philos. Soc. 96 (1984) 237–253. Zbl0566.30023MR757658
- [12] K. Fleischmann and V. Wachtel. Lower deviation probabilities for supercritical Galton–Watson processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 233–255. Zbl1112.60066MR2303121
- [13] B. M. Hambly. On constant tail behaviour for the limiting random variable in a supercritical branching process. J. Appl. Probab. 32 (1995) 267–273. Zbl0819.60076MR1316808
- [14] T. E. Harris. Branching processes. Ann. Math. Statist. 19 (1948) 474–494. Zbl0041.45603MR27465
- [15] O. D. Jones. Multivariate Böttcher equation for polynomials with nonnegative coefficients. Aequationes Math. 63 (2002) 251–265. Zbl1001.39027MR1904719
- [16] O. D. Jones. Large deviations for supercritical multitype branching processes. J. Appl. Probab. 41 (2004) 703–720. Zbl1075.60110MR2074818