Infimum-convolution description of concentration properties of product probability measures, with applications
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 3, page 321-338
- ISSN: 0246-0203
Access Full Article
topHow to cite
topSamson, Paul-Marie. "Infimum-convolution description of concentration properties of product probability measures, with applications." Annales de l'I.H.P. Probabilités et statistiques 43.3 (2007): 321-338. <http://eudml.org/doc/77936>.
@article{Samson2007,
author = {Samson, Paul-Marie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {infimum-convolution; concentration; product probability measure; transportation; empirical processes; bin packing problem},
language = {eng},
number = {3},
pages = {321-338},
publisher = {Elsevier},
title = {Infimum-convolution description of concentration properties of product probability measures, with applications},
url = {http://eudml.org/doc/77936},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Samson, Paul-Marie
TI - Infimum-convolution description of concentration properties of product probability measures, with applications
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 3
SP - 321
EP - 338
LA - eng
KW - infimum-convolution; concentration; product probability measure; transportation; empirical processes; bin packing problem
UR - http://eudml.org/doc/77936
ER -
References
top- [1] S. Aida, T. Masuda, I. Shigekawa, Logarithmic Sobolev inequalities and exponential integrability, J. Func. Anal.126 (1994) 83-101. Zbl0846.46020MR1305064
- [2] G. Bennett, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc.57 (297) (1962) 33-45. Zbl0104.11905
- [3] Bernstein, Sur une modification de l'inégalité de Tchebichef, Annals Science Institute SAV. Ukraine, Sect. Math. I (1924).
- [4] S. Bobkov, F. Gotze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Func. Anal.163 (1999) 1-28. Zbl0924.46027MR1682772
- [5] S. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton–Jacobi equations, Geom. Funct. Anal.10 (2000) 1028-1052. Zbl1006.47500
- [6] S. Boucheron, O. Bousquet, G. Lugosi, P. Massart, Moment inequalities for functions of independent random variables, Ann. Probab.33 (2005) 514-560. Zbl1074.60018MR2123200
- [7] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications, Random Structures Algorithms16 (2000) 277-292. Zbl0954.60008MR1749290
- [8] S. Boucheron, G. Lugosi, P. Massart, Concentration inequalities using the entropy method, Ann. Probab.31 (2003) 1583-1614. Zbl1051.60020MR1989444
- [9] O. Bousquet, A Bennett concentration inequality and its application to suprema of empirical processes, C. R. Acad. Sci. Paris, Ser. I334 (2002) 495-500. Zbl1001.60021MR1890640
- [10] O. Bousquet, Concentration inequalities for sub-additive functions using the entropy method, Stochastic Inequalities and Applications56 (2003) 213-247. Zbl1037.60015MR2073435
- [11] E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Func. Anal.59 (1984) 335-395. Zbl0568.47034MR766493
- [12] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, 1964. Zbl0010.10703JFM60.0169.01
- [13] T. Klein, Une inegalité de concentration à gauche pour les processus empiriques, C. R. Acad. Sci. Paris, Ser. I334 (2002) 500-505. Zbl1003.60024MR1890641
- [14] T. Klein, E. Rio, Concentration around the mean for maxima of empirical processes, Ann. Probab.33 (2005) 1060-1077. Zbl1066.60023MR2135312
- [15] M. Ledoux, On Talagrand's deviation inequalities for product measures, ESAIM: Probab. Statist.1 (1996) 63-87. Zbl0869.60013MR1399224
- [16] M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, American Mathematical Society, 2001. Zbl0995.60002MR1849347
- [17] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, Berlin, 1991. Zbl0748.60004MR1102015
- [18] G. Lugosi, Concentration-of-measure inequalities, Private communication.
- [19] K. Marton, A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal.6 (1997) 556-571. Zbl0856.60072MR1392329
- [20] P. Massart, About the constants in Talagrand's concentration inequalities for empirical processes, Ann. Probab.28 (2000) 863-884. Zbl1140.60310MR1782276
- [21] B. Maurey, Some deviation inequalities, Geom. Funct. Anal.1 (1991) 188-197. Zbl0756.60018MR1097258
- [22] D. Panchenko, A note on Talagrand's concentration inequalities, Electron. Comm. Probab.6 (2001) 55-65. Zbl0977.60008MR1831801
- [23] D. Panchenko, Symmetrization approach to concentration inequalities for empirical processes, Ann. Probab.31 (2003) 2068-2081. Zbl1042.60008MR2016612
- [24] W. Rhee, M. Talagrand, A sharp deviation inequality for the stochastic traveling salesman problem, Ann. Probab.17 (1989) 1-8. Zbl0682.68058MR972767
- [25] E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields119 (2000) 163-175. Zbl0976.60033MR1818244
- [26] E. Rio, Une inégalité de Bennett pour les maxima de processus empiriques, Ann. Inst. H. Poincaré Probab. Statist.38 (6) (2002) 1053-1058. Zbl1014.60011MR1955352
- [27] P.M. Samson, Concentration inequalities for convex functions on Product Spaces, Progr. Probab.56 (2003) 33-52. Zbl1037.60019MR2073425
- [28] M. Schmuckenschlager, Private communication.
- [29] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. Inst. Hautes Études Sci.81 (1995) 73-205. Zbl0864.60013MR1361756
- [30] M. Talagrand, New concentration inequalities in product spaces, Invent. Math.126 (1996) 505-563. Zbl0893.60001MR1419006
- [31] M. Talagrand, A new look at independence, Ann. Probab.24 (1996) 1-34. Zbl0858.60019MR1387624
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.